Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Personalized Reinforcement Learning Summarization Service for Learning Structure from Unstructured Data (2307.05696v1)

Published 9 Jul 2023 in cs.IR, cs.AI, and cs.CL

Abstract: The exponential growth of textual data has created a crucial need for tools that assist users in extracting meaningful insights. Traditional document summarization approaches often fail to meet individual user requirements and lack structure for efficient information processing. To address these limitations, we propose Summation, a hierarchical personalized concept-based summarization approach. It synthesizes documents into a concise hierarchical concept map and actively engages users by learning and adapting to their preferences. Using a Reinforcement Learning algorithm, Summation generates personalized summaries for unseen documents on specific topics. This framework enhances comprehension, enables effective navigation, and empowers users to extract meaningful insights from large document collections aligned with their unique requirements.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. F. Schiliro, A. Beheshti, S. Ghodratnama, F. Amouzgar, B. Benatallah, J. Yang, Q. Z. Sheng, F. Casati, and H. R. Motahari-Nezhad, “icop: Iot-enabled policing processes,” in Service-Oriented Computing–ICSOC 2018 Workshops: ADMS, ASOCA, ISYyCC, CloTS, DDBS, and NLS4IoT, Hangzhou, China, November 12–15, 2018, Revised Selected Papers 16.   Springer, 2019, pp. 447–452.
  2. F. Amouzgar, A. Beheshti, S. Ghodratnama, B. Benatallah, J. Yang, and Q. Z. Sheng, “isheets: A spreadsheet-based machine learning development platform for data-driven process analytics,” in Service-Oriented Computing–ICSOC 2018 Workshops: ADMS, ASOCA, ISYyCC, CloTS, DDBS, and NLS4IoT, Hangzhou, China, November 12–15, 2018, Revised Selected Papers 16.   Springer, 2019, pp. 453–457.
  3. A. Beheshti, F. Schiliro, S. Ghodratnama, F. Amouzgar, B. Benatallah, J. Yang, Q. Z. Sheng, F. Casati, and H. R. Motahari-Nezhad, “iprocess: Enabling iot platforms in data-driven knowledge-intensive processes,” in Business Process Management Forum: BPM Forum 2018, Sydney, NSW, Australia, September 9-14, 2018, Proceedings 16.   Springer, 2018, pp. 108–126.
  4. S. Ghodratnama, A. Beheshti, M. Zakershahrak, and F. Sobhanmanesh, “Intelligent narrative summaries: from indicative to informative summarization,” Big Data Research, vol. 26, p. 100257, 2021.
  5. U. Khanna, S. Ghodratnama, A. Beheshti et al., “Transformer-based models for long document summarisation in financial domain,” in Proceedings of the 4th Financial Narrative Processing Workshop@ LREC2022, 2022, pp. 73–78.
  6. V. Gupta and G. S. Lehal, “A survey of text summarization extractive techniques,” Journal of emerging technologies in web intelligence, vol. 2, no. 3, pp. 258–268, 2010.
  7. A. Beheshti, B. Benatallah, H. R. Motahari-Nezhad, S. Ghodratnama, and F. Amouzgar, “Bp-sparql: A query language for summarizing and analyzing big process data,” in Process Querying Methods.   Springer, 2021, pp. 21–48.
  8. S. Ghodratnama, “Towards personalized and human-in-the-loop document summarization,” arXiv preprint arXiv:2108.09443, 2021.
  9. S. Ghodratnama, M. Zakershahrak, and A. Beheshti, “Summary2vec: learning semantic representation of summaries for healthcare analytics,” in 2021 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2021, pp. 1–8.
  10. C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” Text Summarization Branches Out, 2004.
  11. S. Ghodratnama, M. Zakershahrak, and F. Sobhanmanesh, “Am i rare? an intelligent summarization approach for identifying hidden anomalies,” in Service-Oriented Computing–ICSOC 2020 Workshops: AIOps, CFTIC, STRAPS, AI-PA, AI-IOTS, and Satellite Events, Dubai, United Arab Emirates, December 14–17, 2020, Proceedings.   Springer, 2021, pp. 309–323.
  12. P. Mehta and P. Majumder, “Effective aggregation of various summarization techniques,” Information Processing & Management, vol. 54, no. 2, pp. 145–158, 2018.
  13. H. P. Edmundson, “New methods in automatic extracting,” Journal of the Association for Computing Machinery, vol. 16, no. 2, pp. 264–285, 1969.
  14. S. Ghodratnama, A. Beheshti, M. Zakershahrak, and F. Sobhanmanesh, “Extractive document summarization based on dynamic feature space mapping,” IEEE Access, vol. 8, pp. 139 084–139 095, 2020.
  15. Y. Wu and B. Hu, “Learning to extract coherent summary via deep reinforcement learning,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
  16. S. Narayan, S. B. Cohen, and M. Lapata, “Ranking sentences for extractive summarization with reinforcement learning,” in Association for Computational Linguistics, 2018.
  17. X. Liu, Z. Nie, N. Yu, and J.-R. Wen, “Biosnowball: automated population of wikis,” in ACM SIGKDD international conference on Knowledge discovery and data mining, 2010.
  18. S. Ghodratnama and R. Boostani, “An efficient strategy to handle complex datasets having multimodal distribution,” in ISCS 2014: Interdisciplinary Symposium on Complex Systems.   Springer, 2015, pp. 153–163.
  19. R. Nallapati, A. Feng, F. Peng, and J. Allan, “Event threading within news topics,” in The thirteenth ACM international conference on Information and knowledge management, 2004.
  20. A. Haghighi and L. Vanderwende, “Exploring content models for multi-document summarization,” in Annual Conference of the Association for Computational Linguistics, 2009.
  21. J. Christensen, S. Soderland, G. Bansal et al., “Hierarchical summarization: Scaling up multi-document summarization,” in ACL, 2014, pp. 902–912.
  22. T. Falke, “Automatic structured text summarization with concept maps,” Ph.D. dissertation, Technische Universität, 2019.
  23. A. Borisov, M. Wardenaar, I. Markov, and M. de Rijke, “A click sequence model for web search,” in ACM SIGIR Conference on Research & Development in IR, 2018, pp. 45–54.
  24. J. Kreutzer, S. Khadivi, E. Matusov, and S. Riezler, “Can neural machine translation be improved with user feedback?” arXiv preprint arXiv:1804.05958, 2018.
  25. C. Lawrence and S. Riezler, “Counterfactual learning from human proofreading feedback for semantic parsing,” arXiv preprint arXiv:1811.12239, 2018.
  26. “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  27. C. Orasan and L. Hasler, “Computer-aided summarisation-what the user really wants.” in LREC, 2006, pp. 1548–1551.
  28. M. Narita, K. Kurokawa, and T. Utsuro, “A web-bbojanowski2017enrichingased english abstract writing tool using a tagged ej parallel corpus.” in LREC, 2002.
  29. A. Leuski, C.-Y. Lin, and E. Hovy, “ineats: interactive multi-document summarization,” in 41th Annual Meeting of the Association for Computational Linguistics, 2003, pp. 125–128.
  30. S. Jones, S. Lundy, and G. W. Paynter, “Interactive document summarisation using automatically extracted keyphrases,” in International Conference on System Sciences.   IEEE, 2002, pp. 1160–1169.
  31. P. Avinesh and C. M. Meyer, “Joint optimization of user-desired content in multi-document summaries by learning from user feedback,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017, pp. 1353–1363.
  32. O. Etzioni, M. Banko, S. Soderland, and D. S. Weld, “Open information extraction from the web,” Communications of the ACM, vol. 51, no. 12, pp. 68–74, 2008.
  33. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” NIPS, vol. 26, pp. 3111–3119, 2013.
  34. P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword information,” Transactions of the Association for Computational Linguistics, vol. 5, pp. 135–146, 2017.
  35. R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of clusters in a data set via the gap statistic,” Journal of the Royal Statistical Society, vol. 63, no. 2, pp. 411–423, 2001.
  36. A. Alhindi, U. Kruschwitz, C. Fox, and M.-D. Albakour, “Profile-based summarisation for web site navigation,” ACM Transactions on Information Systems (TOIS), vol. 33, no. 1, pp. 1–39, 2015.
  37. M. Zopf, “Estimating summary quality with pairwise preferences,” in North American Chapter of the Association for Computational Linguistics, Volume 1, 2018, pp. 1687–1696.
  38. J. Fürnkranz and E. Hüllermeier, “Preference learning and ranking by pairwise comparison,” in Preference learning.   Springer, 2010, pp. 65–82.
  39. M. Szummer and E. Yilmaz, “Semi-supervised learning to rank with preference regularization,” in International conference on Information and knowledge management, 2011, pp. 269–278.
  40. M. Zakershahrak and S. Ghodratnama, “Are we on the same page? hierarchical explanation generation for planning tasks in human-robot teaming using reinforcement learning,” arXiv preprint arXiv:2012.11792, 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Samira Ghodratnama (9 papers)
  2. Amin Beheshti (31 papers)
  3. Mehrdad Zakershahrak (11 papers)
Citations (3)