Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal Kripke Models (2307.05631v1)

Published 11 Jul 2023 in cs.AI and cs.LO

Abstract: This work extends Halpern and Pearl's causal models for actual causality to a possible world semantics environment. Using this framework we introduce a logic of actual causality with modal operators, which allows for reasoning about causality in scenarios involving multiple possibilities, temporality, knowledge and uncertainty. We illustrate this with a number of examples, and conclude by discussing some future directions for research.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. In: 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), 198, Schloss Dagstuhl–Leibniz-Zentrum f {{\{{\\\backslash\” u}}\}} r Informatik, p. 1, 10.4230/LIPIcs.ICALP.2021.1.
  2. Journal of Logic and Computation, 10.1093/logcom/exac011.
  3. Sander Beckers (2022): Causal explanations and XAI. In: Conference on Causal Learning and Reasoning, PMLR, pp. 90–109, 10.48550/arXiv.2201.13169.
  4. Formal Methods in System Design 40, pp. 20–40, 10.1007/s10703-011-0132-2.
  5. Brian Bergstein (2020): What AI still can’t do. MIT Technol Rev 123(2), pp. 1–7. Available at https://www.technologyreview.com/2020/02/19/868178/what-ai-still-cant-do/.
  6. Georgiana Caltais, Stefan Leue & Mohammad Reza Mousavi (2016): (De-) Composing Causality in Labeled Transition Systems. In: The 1st Workshop on Causal Reasoning for Embedded and safety-critical Systems Technologies, Eindhoven, The Netherlands, April 8, 2016, 224, Open Publishing Association, pp. 10–24, 10.4204/EPTCS.224.3.
  7. Georgiana Caltais, Mohammad Reza Mousavi & Hargurbir Singh (2020): Causal reasoning for safety in Hennessy Milner logic. Fundamenta Informaticae 173(2-3), pp. 217–251, 10.1007/s10849-022-09357-y.
  8. Hana Chockler, Joseph Y Halpern & Orna Kupferman (2008): What causes a system to satisfy a specification? ACM Transactions on Computational Logic (TOCL) 9(3), pp. 1–26, 10.1145/1352582.1352588.
  9. In: 2015 IEEE 28th Computer Security Foundations Symposium, IEEE, pp. 261–275, 10.1109/CSF.2015.25.
  10. A Philip Dawid et al. (2007): Fundamentals of statistical causality. RSS/EPSRC Grad Train Progr 279, pp. 1–94. Available at https://www.semanticscholar.org/paper/FUNDAMENTALS-OF-STATISTICAL-CAUSALITY-Dawid/c4bcad0bb58091ecf9204ddb5db7dce749b0d461.
  11. Didier Dubois & Henri Prade (2020): A glance at causality theories for artificial intelligence. A Guided Tour of Artificial Intelligence Research: Volume I: Knowledge Representation, Reasoning and Learning, pp. 275–305, 10.1007/978-3-030-06164-7_9.
  12. Andrea Falcon (2006): Aristotle on causality. Available at https://plato.stanford.edu/entries/aristotle-causality/.
  13. Clark Glymour & Frank Wimberly (2007): Actual causes and thought experiments. Causation and explanation 4, p. 43. Available at https://www.semanticscholar.org/paper/Actual-Causes-and-Thought-Experiments-Glymour-Wimberly/d17f5a2896cf38b06e13713042e655e33753a69b.
  14. Ned Hall (2007): Structural equations and causation. Philosophical Studies 132, pp. 109–136, 10.1007/s11098-006-9057-9.
  15. Joseph Y Halpern (2015): A modification of the Halpern-Pearl definition of causality. arXiv preprint arXiv:1505.00162, 10.48550/arXiv.1505.00162.
  16. Joseph Y Halpern (2016): Actual causality. MiT Press, 10.7551/mitpress/10809.001.0001.
  17. Joseph Y Halpern & Judea Pearl (2005): Causes and explanations: A structural-model approach. Part I: Causes. The British journal for the philosophy of science, 10.1093/bjps/axi147.
  18. Joseph Y Halpern & Judea Pearl (2005): Causes and explanations: A structural-model approach. Part II: Explanations. The British journal for the philosophy of science, 10.1093/bjps/axi148.
  19. Christopher Hitchcock (2001): A tale of two effects. The Philosophical Review 110(3), pp. 361–396, 10.1215/00318108-110-3-361.
  20. Christopher Hitchcock (2013): What is the ‘cause’in causal decision theory? Erkenntnis 78, pp. 129–146, 10.1007/s10670-013-9440-9.
  21. David Hume (1748): An enquiry concerning human understanding and other writings.
  22. In: ECAI 2020, IOS Press, pp. 2978–2985, 10.3233/FAIA200472.
  23. Florian Leitner-Fischer & Stefan Leue (2013): Causality Checking for Complex System Models. In Roberto Giacobazzi, Josh Berdine & Isabella Mastroeni, editors: Verification, Model Checking, and Abstract Interpretation, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 248–267, 10.1007/978-3-642-35873-9_16.
  24. David Lewis (1973): Causation. The journal of philosophy 70(17), pp. 556–567, 10.2307/2025310.
  25. David Lewis (2004): Causation as influence. The Journal of Philosophy 97(4), pp. 182–197, 10.7551/mitpress/1752.003.0004.
  26. IEEE Data Engineering Bulletin 33(ARTICLE), pp. 59–67. Available at https://www.cs.cornell.edu/home/halpern/papers/DE_Bulletin2010.pdf.
  27. Oxford University Press on Demand, 10.1093/acprof:oso/9780199256860.001.0001.
  28. Judea Pearl (2009): Causality. Cambridge university press, 10.1017/CBO9780511803161.
  29. Judea Pearl & Dana Mackenzie (2018): The book of why: the new science of cause and effect. Basic books, 10.1080/01621459.2020.1721245.
  30. Bernhard Schölkopf (2022): Causality for machine learning. In: Probabilistic and Causal Inference: The Works of Judea Pearl, pp. 765–804, 10.1145/3501714.3501755.
  31. James Woodward (2005): Making things happen: A theory of causal explanation. Oxford university press, 10.1111/j.1933-1592.2007.00012.x.

Summary

We haven't generated a summary for this paper yet.