Complexity and algorithms for matching cut problems in graphs without long induced paths and cycles (2307.05402v2)
Abstract: In a graph, a (perfect) matching cut is an edge cut that is a (perfect) matching. Matching Cut (MC), respectively, Perfect Matching Cut (PMC), is the problem of deciding whether a given graph has a matching cut, respectively, a perfect matching cut. The Disconnected Perfect Matching problem (DPM) is to decide if a graph has a perfect matching that contains a matching cut. Solving an open problem posed in [Lucke, Paulusma, Ries (ISAAC 2022, Algorithmica 2023) & Feghali, Lucke, Paulusma, Ries (arXiv:2212.12317)], we show that PMC is NP-complete in graphs without induced $14$-vertex path $P_{14}$. Our reduction also works simultaneously for MC and DPM, improving the previous hardness results of MC on $P_{15}$-free graphs and of DPM on $P_{19}$-free graphs to $P_{14}$-free graphs for both problems. Actually, we prove a slightly stronger result: within $P_{14}$-free $8$-chordal graphs (graphs without chordless cycles of length at least $9$), it is hard to distinguish between those without matching cuts (respectively, perfect matching cuts, disconnected perfect matchings) and those in which every matching cut is a perfect matching cut. Moreover, assuming the Exponential Time Hypothesis, none of these problems can be solved in $2{o(n)}$ time for $n$-vertex $P_{14}$-free $8$-chordal graphs. On the positive side, we show that, as for MC [Moshi (JGT 1989)], DPM and PMC are polynomially solvable when restricted to $4$-chordal graphs. Together with the negative results, this partly answers an open question on the complexity of PMC in $k$-chordal graphs asked in [Le, Telle (TCS 2022) & Lucke, Paulusma, Ries (MFCS 2023)].
- A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas. Inf. Process. Lett., 8(3):121–123, 1979. doi:10.1016/0020-0190(79)90002-4.
- Cutting Barnette graphs perfectly is hard. In Graph-Theoretic Concepts in Computer Science - 49th International Workshop, WG 2023, volume 14093 of Lecture Notes in Computer Science, pages 116–129. Springer, 2023. doi:10.1007/978-3-031-43380-1_9.
- The complexity of the Perfect Matching-Cut problem. CoRR, abs/2011.03318v2, 2021. doi:10.48550/arXiv.2011.03318.
- Matching Cut in Graphs with Large Minimum Degree. Algorithmica, 83(5):1238–1255, 2021. doi:10.1007/s00453-020-00782-8.
- Vasek Chvátal. Recognizing decomposable graphs. Journal of Graph Theory, 8(1):51–53, 1984. doi:10.1002/jgt.3190080106.
- Carl Feghali. A note on matching-cut in Ptsubscript𝑃𝑡{P}_{t}italic_P start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT-free graphs. Inf. Process. Lett., 179:106294, 2023. doi:10.1016/j.ipl.2022.106294.
- New Hardness Results for Matching Cut and Disconnected Perfect Matching. CoRR, abs/2212.12317, 2022. doi:10.48550/arXiv.2212.12317.
- Matching Cuts in Graphs of High Girth and H-Free Graphs. In 34th International Symposium on Algorithms and Computation, ISAAC 2023, volume 283 of LIPIcs, pages 31:1–31:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ISAAC.2023.31.
- Oded Goldreich. On Promise Problems: A Survey. In Theoretical Computer Science, Essays in Memory of Shimon Even, volume 3895 of Lecture Notes in Computer Science, pages 254–290. Springer, 2006. doi:10.1007/11685654_12.
- Refined notions of parameterized enumeration kernels with applications to matching cut enumeration. J. Comput. Syst. Sci., 123:76–102, 2022. doi:10.1016/j.jcss.2021.07.005.
- Ron L. Graham. On primitive graphs and optimal vertex assignments. Ann. N. Y. Acad. Sci., 175(1):170–186, 1970.
- Partitioning Graphs into Generalized Dominating Sets. Nord. J. Comput., 5(2):128–142, 1998.
- On the Complexity of k𝑘kitalic_k-SAT. J. Comput. Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.
- Which Problems Have Strongly Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.1774.
- Algorithms solving the Matching Cut problem. Theor. Comput. Sci., 609:328–335, 2016. doi:10.1016/j.tcs.2015.10.016.
- A complexity dichotomy for matching cut in (bipartite) graphs of fixed diameter. Theor. Comput. Sci., 770:69–78, 2019. doi:10.1016/j.tcs.2018.10.029.
- Comlexity results for matching cut problems in graphs without long induced paths. In Graph-Theoretic Concepts in Computer Science - 49th International Workshop, WG 2023, volume 14093 of Lecture Notes in Computer Science, pages 417–431. Springer, 2023. doi:10.1007/978-3-031-43380-1_30.
- The perfect matching cut problem revisited. Proc. WG 2021, LNCS 12911:182–194, 2021, also in: Theor. Comput. Sci., 931:117–130, 2022. doi:10.1016/j.tcs.2022.07.035.
- Finding Matching Cuts in H𝐻{H}italic_H-Free Graphs. In 33rd International Symposium on Algorithms and Computation, ISAAC (2022), volume 248 of LIPIcs, pages 22:1–22:16, 2022. doi:10.4230/LIPIcs.ISAAC.2022.22.
- Finding Matching Cuts in H𝐻{H}italic_H-Free Graphs. CoRR, abs/2207.07095, 2022. doi:10.48550/arXiv.2207.07095.
- Dichotomies for Maximum Matching Cut: H𝐻Hitalic_H-Freeness, Bounded Diameter, Bounded Radius. In 48th International Symposium on Mathematical Foundations of Computer Science, MFCS 2023, volume 272 of LIPIcs, pages 64:1–64:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.MFCS.2023.64.
- Finding Matching Cuts in H𝐻{H}italic_H-Free Graphs. Algorithmica, 2023. doi:10.1007/s00453-023-01137-9.
- An O(|V|⋅|E|)𝑂⋅𝑉𝐸{O}(\sqrt{|{V}|}\cdot|{E}|)italic_O ( square-root start_ARG | italic_V | end_ARG ⋅ | italic_E | ) algorithm for Finding Maximum Matching in General Graphs. In 21st Annual Symposium on Foundations of Computer Science, 1980, pages 17–27. IEEE Computer Society, 1980. doi:10.1109/SFCS.1980.12.
- Bernard M. E. Moret. Theory of Computation. Addison-Wesley-Longman, 1998.
- Augustine M. Moshi. Matching cutsets in graphs. Journal of Graph Theory, 13(5):527–536, 1989. doi:10.1002/jgt.3190130502.
- Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC1978), pages 216–226. ACM, 1978. doi:10.1145/800133.804350.
- Hoang-Oanh Le (7 papers)
- Van Bang Le (21 papers)