Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complexity and algorithms for matching cut problems in graphs without long induced paths and cycles (2307.05402v2)

Published 11 Jul 2023 in cs.CC, cs.DM, and math.CO

Abstract: In a graph, a (perfect) matching cut is an edge cut that is a (perfect) matching. Matching Cut (MC), respectively, Perfect Matching Cut (PMC), is the problem of deciding whether a given graph has a matching cut, respectively, a perfect matching cut. The Disconnected Perfect Matching problem (DPM) is to decide if a graph has a perfect matching that contains a matching cut. Solving an open problem posed in [Lucke, Paulusma, Ries (ISAAC 2022, Algorithmica 2023) & Feghali, Lucke, Paulusma, Ries (arXiv:2212.12317)], we show that PMC is NP-complete in graphs without induced $14$-vertex path $P_{14}$. Our reduction also works simultaneously for MC and DPM, improving the previous hardness results of MC on $P_{15}$-free graphs and of DPM on $P_{19}$-free graphs to $P_{14}$-free graphs for both problems. Actually, we prove a slightly stronger result: within $P_{14}$-free $8$-chordal graphs (graphs without chordless cycles of length at least $9$), it is hard to distinguish between those without matching cuts (respectively, perfect matching cuts, disconnected perfect matchings) and those in which every matching cut is a perfect matching cut. Moreover, assuming the Exponential Time Hypothesis, none of these problems can be solved in $2{o(n)}$ time for $n$-vertex $P_{14}$-free $8$-chordal graphs. On the positive side, we show that, as for MC [Moshi (JGT 1989)], DPM and PMC are polynomially solvable when restricted to $4$-chordal graphs. Together with the negative results, this partly answers an open question on the complexity of PMC in $k$-chordal graphs asked in [Le, Telle (TCS 2022) & Lucke, Paulusma, Ries (MFCS 2023)].

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas. Inf. Process. Lett., 8(3):121–123, 1979. doi:10.1016/0020-0190(79)90002-4.
  2. Cutting Barnette graphs perfectly is hard. In Graph-Theoretic Concepts in Computer Science - 49th International Workshop, WG 2023, volume 14093 of Lecture Notes in Computer Science, pages 116–129. Springer, 2023. doi:10.1007/978-3-031-43380-1_9.
  3. The complexity of the Perfect Matching-Cut problem. CoRR, abs/2011.03318v2, 2021. doi:10.48550/arXiv.2011.03318.
  4. Matching Cut in Graphs with Large Minimum Degree. Algorithmica, 83(5):1238–1255, 2021. doi:10.1007/s00453-020-00782-8.
  5. Vasek Chvátal. Recognizing decomposable graphs. Journal of Graph Theory, 8(1):51–53, 1984. doi:10.1002/jgt.3190080106.
  6. Carl Feghali. A note on matching-cut in Ptsubscript𝑃𝑡{P}_{t}italic_P start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT-free graphs. Inf. Process. Lett., 179:106294, 2023. doi:10.1016/j.ipl.2022.106294.
  7. New Hardness Results for Matching Cut and Disconnected Perfect Matching. CoRR, abs/2212.12317, 2022. doi:10.48550/arXiv.2212.12317.
  8. Matching Cuts in Graphs of High Girth and H-Free Graphs. In 34th International Symposium on Algorithms and Computation, ISAAC 2023, volume 283 of LIPIcs, pages 31:1–31:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ISAAC.2023.31.
  9. Oded Goldreich. On Promise Problems: A Survey. In Theoretical Computer Science, Essays in Memory of Shimon Even, volume 3895 of Lecture Notes in Computer Science, pages 254–290. Springer, 2006. doi:10.1007/11685654_12.
  10. Refined notions of parameterized enumeration kernels with applications to matching cut enumeration. J. Comput. Syst. Sci., 123:76–102, 2022. doi:10.1016/j.jcss.2021.07.005.
  11. Ron L. Graham. On primitive graphs and optimal vertex assignments. Ann. N. Y. Acad. Sci., 175(1):170–186, 1970.
  12. Partitioning Graphs into Generalized Dominating Sets. Nord. J. Comput., 5(2):128–142, 1998.
  13. On the Complexity of k𝑘kitalic_k-SAT. J. Comput. Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.
  14. Which Problems Have Strongly Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.1774.
  15. Algorithms solving the Matching Cut problem. Theor. Comput. Sci., 609:328–335, 2016. doi:10.1016/j.tcs.2015.10.016.
  16. A complexity dichotomy for matching cut in (bipartite) graphs of fixed diameter. Theor. Comput. Sci., 770:69–78, 2019. doi:10.1016/j.tcs.2018.10.029.
  17. Comlexity results for matching cut problems in graphs without long induced paths. In Graph-Theoretic Concepts in Computer Science - 49th International Workshop, WG 2023, volume 14093 of Lecture Notes in Computer Science, pages 417–431. Springer, 2023. doi:10.1007/978-3-031-43380-1_30.
  18. The perfect matching cut problem revisited. Proc. WG 2021, LNCS 12911:182–194, 2021, also in: Theor. Comput. Sci., 931:117–130, 2022. doi:10.1016/j.tcs.2022.07.035.
  19. Finding Matching Cuts in H𝐻{H}italic_H-Free Graphs. In 33rd International Symposium on Algorithms and Computation, ISAAC (2022), volume 248 of LIPIcs, pages 22:1–22:16, 2022. doi:10.4230/LIPIcs.ISAAC.2022.22.
  20. Finding Matching Cuts in H𝐻{H}italic_H-Free Graphs. CoRR, abs/2207.07095, 2022. doi:10.48550/arXiv.2207.07095.
  21. Dichotomies for Maximum Matching Cut: H𝐻Hitalic_H-Freeness, Bounded Diameter, Bounded Radius. In 48th International Symposium on Mathematical Foundations of Computer Science, MFCS 2023, volume 272 of LIPIcs, pages 64:1–64:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.MFCS.2023.64.
  22. Finding Matching Cuts in H𝐻{H}italic_H-Free Graphs. Algorithmica, 2023. doi:10.1007/s00453-023-01137-9.
  23. An O⁢(|V|⋅|E|)𝑂⋅𝑉𝐸{O}(\sqrt{|{V}|}\cdot|{E}|)italic_O ( square-root start_ARG | italic_V | end_ARG ⋅ | italic_E | ) algorithm for Finding Maximum Matching in General Graphs. In 21st Annual Symposium on Foundations of Computer Science, 1980, pages 17–27. IEEE Computer Society, 1980. doi:10.1109/SFCS.1980.12.
  24. Bernard M. E. Moret. Theory of Computation. Addison-Wesley-Longman, 1998.
  25. Augustine M. Moshi. Matching cutsets in graphs. Journal of Graph Theory, 13(5):527–536, 1989. doi:10.1002/jgt.3190130502.
  26. Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC1978), pages 216–226. ACM, 1978. doi:10.1145/800133.804350.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hoang-Oanh Le (7 papers)
  2. Van Bang Le (21 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.