Protecting the Future: Neonatal Seizure Detection with Spatial-Temporal Modeling (2307.05382v1)
Abstract: A timely detection of seizures for newborn infants with electroencephalogram (EEG) has been a common yet life-saving practice in the Neonatal Intensive Care Unit (NICU). However, it requires great human efforts for real-time monitoring, which calls for automated solutions to neonatal seizure detection. Moreover, the current automated methods focusing on adult epilepsy monitoring often fail due to (i) dynamic seizure onset location in human brains; (ii) different montages on neonates and (iii) huge distribution shift among different subjects. In this paper, we propose a deep learning framework, namely STATENet, to address the exclusive challenges with exquisite designs at the temporal, spatial and model levels. The experiments over the real-world large-scale neonatal EEG dataset illustrate that our framework achieves significantly better seizure detection performance.
- A. Rakshasbhuvankar, S. Paul, L. Nagarajan, S. Ghosh, and S. Rao, “Amplitude-integrated eeg for detection of neonatal seizures: a systematic review,” Seizure, 2015.
- H. Khamis, A. Mohamed, and S. Simpson, “Frequency–moment signatures: a method for automated seizure detection from scalp eeg,” Clinical Neurophysiology, 2013.
- N. Bigdely-Shamlo, T. Mullen, C. Kothe, K.-M. Su, and K. A. Robbins, “The prep pipeline: standardized preprocessing for large-scale eeg analysis,” Frontiers in neuroinformatics, 2015.
- M. Jas, D. A. Engemann, Y. Bekhti, F. Raimondo, and A. Gramfort, “Autoreject: Automated artifact rejection for meg and eeg data,” NeuroImage, 2017.
- S. Tang, J. Dunnmon, K. K. Saab, X. Zhang, Q. Huang, F. Dubost, D. Rubin, and C. Lee-Messer, “Self-supervised graph neural networks for improved electroencephalographic seizure analysis,” in International Conference on Learning Representations, 2021.
- W.-L. Zheng, E. Amorim, J. Jing, O. Wu, M. Ghassemi, J. W. Lee, A. Sivaraju, T. Pang, S. T. Herman, N. Gaspard et al., “Predicting neurological outcome from electroencephalogram dynamics in comatose patients after cardiac arrest with deep learning,” IEEE transactions on biomedical engineering, 2021.
- P. Boonyakitanont, A. Lek-uthai, and J. Songsiri, “Automatic epileptic seizure onset-offset detection based on cnn in scalp eeg,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020.
- A. Gramacki and J. Gramacki, “A deep learning framework for epileptic seizure detection based on neonatal eeg signals,” Scientific reports, 2022.
- A. O’Shea, G. Lightbody, G. Boylan, and A. Temko, “Neonatal seizure detection using convolutional neural networks,” in 2017 IEEE 27th International Workshop on MLSP, 2017.
- A. O’Shea, R. Ahmed, G. Lightbody, E. Pavlidis, R. Lloyd, F. Pisani, W. Marnane, S. Mathieson, G. Boylan, and A. Temko, “Deep learning for eeg seizure detection in preterm infants,” International Journal of Neural Systems, 2021.
- N. J. Stevenson, K. Tapani, L. Lauronen, and S. Vanhatalo, “A dataset of neonatal eeg recordings with seizure annotations,” Scientific data, 2019.
- J. Tao and A. Mathur, “Using amplitude-integrated eeg in neonatal intensive care,” Journal of perinatology, 2010.
- R. Lawrence, A. Mathur, S. N. T. Tich, J. Zempel, and T. Inder, “A pilot study of continuous limited-channel aeeg in term infants with encephalopathy,” The Journal of pediatrics, 2009.
- G. F. T. Variane, J. P. V. Camargo, D. P. Rodrigues, M. Magalhães, and M. J. Mimica, “Current status and future directions of neuromonitoring with emerging technologies in neonatal care,” Frontiers in Pediatrics, 2021.
- L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of Machine Learning Research, 2008.
- S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” arXiv preprint arXiv:1803.01271, 2018.
- H. Wu, A. Gattami, and M. Flierl, “Conditional mutual information-based contrastive loss for financial time series forecasting,” arXiv preprint arXiv:2002.07638, 2020.
- Y. Fang, K. Ren, C. Shan, Y. Shen, Y. Li, W. Zhang, Y. Yu, and D. Li, “Learning decomposed spatial relations for multi-variate time-series modeling,” in AAAI 2023, 2023.
- Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network: Data-driven traffic forecasting,” arXiv preprint arXiv:1707.01926, 2017.
- P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
- R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures of local experts,” Neural computation, 1991.
- P. Saikia and R. D. Baruah, “Investigating stacked ensemble model for oil reservoir characterisation,” in 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019, pp. 13–20.
- S. U. Sadat, H. H. Shomee, A. Awwal, S. N. Amin, M. T. Reza, and M. Z. Parvez, “Alzheimer’s disease detection and classification using transfer learning technique and ensemble on convolutional neural networks,” in 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2021, pp. 1478–1481.
- Z. Li, K. Ren, X. Jiang, Y. Shen, H. Zhang, and D. Li, “Simple: Specialized model-sample matching for domain generalization,” in The Eleventh International Conference on Learning Representations, 2023.
- N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean, “Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.
- Z. Li, K. Ren, Y. Yang, X. Jiang, Y. Yang, and D. Li, “Towards inference efficient deep ensemble learning,” arXiv preprint arXiv:2301.12378, 2023.
- K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder–decoder for statistical machine translation,” in Empirical Methods in Natural Language Processing, 2014.
- L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Catboost: unbiased boosting with categorical features,” Neural Information Processing Systems, 2018.
- A. Dempster, F. Petitjean, and G. I. Webb, “Rocket: exceptionally fast and accurate time series classification using random convolutional kernels,” Data Mining and Knowledge Discovery, 2020.
- F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate lstm-fcns for time series classification,” Neural Networks, 2019.
- H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt, J. Weber, G. I. Webb, L. Idoumghar, P.-A. Muller, and F. Petitjean, “Inceptiontime: Finding alexnet for time series classification,” Data Mining and Knowledge Discovery, 2020.