Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Class Instance Balanced Learning for Long-Tailed Classification (2307.05322v1)

Published 11 Jul 2023 in cs.CV

Abstract: The long-tailed image classification task remains important in the development of deep neural networks as it explicitly deals with large imbalances in the class frequencies of the training data. While uncommon in engineered datasets, this imbalance is almost always present in real-world data. Previous approaches have shown that combining cross-entropy and contrastive learning can improve performance on the long-tailed task, but they do not explore the tradeoff between head and tail classes. We propose a novel class instance balanced loss (CIBL), which reweights the relative contributions of a cross-entropy and a contrastive loss as a function of the frequency of class instances in the training batch. This balancing favours the contrastive loss for more common classes, leading to a learned classifier with a more balanced performance across all class frequencies. Furthermore, increasing the relative weight on the contrastive head shifts performance from common (head) to rare (tail) classes, allowing the user to skew the performance towards these classes if desired. We also show that changing the linear classifier head with a cosine classifier yields a network that can be trained to similar performance in substantially fewer epochs. We obtain competitive results on both CIFAR-100-LT and ImageNet-LT.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “Nuscenes: A multimodal dataset for autonomous driving,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  2. H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–1284, 2009.
  3. C. Huang, Y. Li, C. C. Loy, and X. Tang, “Learning deep representation for imbalanced classification,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  4. D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and L. Van Der Maaten, “Exploring the limits of weakly supervised pretraining,” in Proc. European Conference on Computer Vision (ECCV), 2018.
  5. S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and R. Togneri, “Cost-sensitive learning of deep feature representations from imbalanced data,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 8, pp. 3573–3587, 2017.
  6. Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced loss based on effective number of samples,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
  7. M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class imbalance problem in convolutional neural networks,” Neural Networks, vol. 106, pp. 249–259, 2018.
  8. S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Regularization strategy to train strong classifiers with localizable features,” in Proc. IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
  9. K. Li, Y. Zhang, K. Li, and Y. Fu, “Adversarial feature hallucination networks for few-shot learning,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  10. S. Li, K. Gong, C. H. Liu, Y. Wang, F. Qiao, and X. Cheng, “Metasaug: Meta semantic augmentation for long-tailed visual recognition,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
  11. K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning imbalanced datasets with label-distribution-aware margin loss,” arXiv preprint arXiv:1906.07413, 2019.
  12. J. Ren, C. Yu, X. Ma, H. Zhao, S. Yi et al., “Balanced meta-softmax for long-tailed visual recognition,” Advances in Neural Information Processing Systems, vol. 33, pp. 4175–4186, 2020.
  13. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in International conference on machine learning, 2020.
  14. X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with momentum contrastive learning,” arXiv preprint arXiv:2003.04297, 2020.
  15. B. Kang, Y. Li, S. Xie, Z. Yuan, and J. Feng, “Exploring balanced feature spaces for representation learning,” in International Conference on Learning Representations, 2021.
  16. P. Wang, K. Han, X.-S. Wei, L. Zhang, and L. Wang, “Contrastive learning based hybrid networks for long-tailed image classification,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
  17. J. Cui, Z. Zhong, S. Liu, B. Yu, and J. Jia, “Parametric contrastive learning,” in Proc. IEEE/CVF International Conference on Computer Vision (ICCV), 2021.
  18. J. Zhu, Z. Wang, J. Chen, Y.-P. P. Chen, and Y.-G. Jiang, “Balanced contrastive learning for long-tailed visual recognition,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  19. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proc. IEEE International Conference on Computer Vision (ICCV), 2017.
  20. B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and Y. Kalantidis, “Decoupling representation and classifier for long-tailed recognition,” arXiv preprint arXiv:1910.09217, 2019.
  21. S. Zhang, Z. Li, S. Yan, X. He, and J. Sun, “Distribution alignment: A unified framework for long-tail visual recognition,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
  22. Y. Xu, Y.-L. Li, J. Li, and C. Lu, “Constructing balance from imbalance for long-tailed image recognition,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  23. J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face recognition,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
  24. A. K. Menon, S. Jayaplana, A. S. Rawat, H. Jain, A. Veit, and S. Kumar, “Long-tail learning via logit adjustment,” arXiv preprint arXiv:2007.07314, 2020.
  25. Y. Zhao, W. Chen, X. Tan, K. Huang, and J. Zhu, “Adaptive logit adjustment loss for long-tailed visual recognition,” in Proc. AAAI Conference on Artificial Intelligence, 2022.
  26. J. Kim, J. Jeong, and J. Shin, “M2m: Imbalanced classification via major-to-minor translation,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  27. S. Park, Y. Hong, B. Heo, S. Yun, and J. Y. Choi, “The majority can help the minority: Context-rich minority oversampling for long-tailed classification,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  28. S. S. Mullick, S. Datta, and S. Das, “Generative adversarial minority oversampling,” in Proc. IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
  29. S. Zada, I. Benou, and M. Irani, “Pure noise to the rescue of insufficient data: Improving imbalanced classification by training on random noise images,” in Proc. International Conference on Machine Learning (ICML), 2022.
  30. X. Wang, L. Lian, Z. Miao, Z. Liu, and S. X. Yu, “Long-tailed recognition by routing diverse distribution-aware experts,” arXiv preprint arXiv:2010.01809, 2020.
  31. L. Xiang, G. Ding, and J. Han, “Learning from multiple experts: Self-paced knowledge distillation for long-tailed classification,” in Proc. European Conference on Computer Vision (ECCV), 2020.
  32. J. Li, Z. Tan, J. Wan, Z. Lei, and G. Guo, “Nested collaborative learning for long-tailed visual recognition,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  33. J. Cui, S. Liu, Z. Tian, Z. Zhong, and J. Jia, “Reslt: Residual learning for long-tailed recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
  34. K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation learning,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  35. Y. Yang and Z. Xu, “Rethinking the value of labels for improving class-imbalanced learning,” Advances in Neural Information Processing Systems, vol. 33, 2020.
  36. T. Li, L. Wang, and G. Wu, “Self supervision to distillation for long-tailed visual recognition,” in Proc. of the IEEE/CVF International Conference on Computer Vision, 2021.
  37. P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 18 661–18 673, 2020.
  38. T. Li, P. Cao, Y. Yuan, L. Fan, Y. Yang, R. S. Feris, P. Indyk, and D. Katabi, “Targeted supervised contrastive learning for long-tailed recognition,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  39. Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-scale long-tailed recognition in an open world,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
  40. A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.
  41. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.
  42. T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.
  43. E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment: Learning augmentation policies from data,” arXiv preprint arXiv:1805.09501, 2018.
  44. E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical automated data augmentation with a reduced search space,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) workshops, 2020.
  45. Z. Zhong, J. Cui, S. Liu, and J. Jia, “Improving calibration for long-tailed recognition,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
  46. H. Wang, S. Fu, X. He, H. Fang, Z. Liu, and H. Hu, “Towards calibrated hyper-sphere representation via distribution overlap coefficient for long-tailed learning,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  47. S. Kornblith, T. Chen, H. Lee, and M. Norouzi, “Why do better loss functions lead to less transferable features?” Advances in Neural Information Processing Systems, vol. 34, pp. 28 648–28 662, 2021.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Marc-Antoine Lavoie (4 papers)
  2. Steven Waslander (18 papers)

Summary

We haven't generated a summary for this paper yet.