Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SuryaKiran at MEDIQA-Sum 2023: Leveraging LoRA for Clinical Dialogue Summarization (2307.05162v1)

Published 11 Jul 2023 in cs.CL, cs.AI, and cs.LG

Abstract: Finetuning LLMs helps improve the results for domain-specific use cases. End-to-end finetuning of LLMs is time and resource intensive and has high storage requirements to store the finetuned version of the LLM. Parameter Efficient Fine Tuning (PEFT) methods address the time and resource challenges by keeping the LLM as a fixed base and add additional layers, which the PEFT methods finetune. This paper demonstrates the evaluation results for one such PEFT method Low Rank Adaptation (LoRA), for Clinical Dialogue Summarization. The evaluation results show that LoRA works at par with end-to-end finetuning for a LLM. The paper presents the evaluations done for solving both the Subtask A and B from ImageCLEFmedical {https://www.imageclef.org/2023/medical}

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. Sequence to sequence learning with neural networks, in: Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K. Weinberger (Eds.), Advances in Neural Information Processing Systems, volume 27, Curran Associates, Inc., 2014. URL: https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf.
  2. Attention is all you need, in: I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems, volume 30, Curran Associates, Inc., 2017. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
  3. The power of scale for parameter-efficient prompt tuning, in: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, 2021, pp. 3045–3059. URL: https://aclanthology.org/2021.emnlp-main.243. doi:10.18653/v1/2021.emnlp-main.243.
  4. Overview of the mediqa-sum task at imageclef 2023: Summarization and classification of doctor-patient conversations, in: CLEF 2023 Working Notes, CEUR Workshop Proceedings, CEUR-WS.org, Thessaloniki, Greece, 2023.
  5. Overview of ImageCLEF 2023: Multimedia retrieval in medical, social media and recommender systems applications, in: Experimental IR Meets Multilinguality, Multimodality, and Interaction, Proceedings of the 14th International Conference of the CLEF Association (CLEF 2023), Springer Lecture Notes in Computer Science LNCS, Thessaloniki, Greece, 2023.
  6. H. Kobayashi, Frustratingly easy model ensemble for abstractive summarization, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Brussels, Belgium, 2018, pp. 4165–4176. URL: https://aclanthology.org/D18-1449. doi:10.18653/v1/D18-1449.
  7. Parameter-efficient transfer learning for NLP, CoRR abs/1902.00751 (2019). URL: http://arxiv.org/abs/1902.00751. arXiv:1902.00751.
  8. C.-Y. Lin, ROUGE: A package for automatic evaluation of summaries, in: Text Summarization Branches Out, Association for Computational Linguistics, Barcelona, Spain, 2004, pp. 74–81. URL: https://aclanthology.org/W04-1013.
  9. Bertscore: Evaluating text generation with BERT, CoRR abs/1904.09675 (2019). URL: http://arxiv.org/abs/1904.09675. arXiv:1904.09675.
  10. Publicly available clinical BERT embeddings, CoRR abs/1904.03323 (2019). URL: http://arxiv.org/abs/1904.03323. arXiv:1904.03323.
  11. On early stopping in gradient descent learning, Constructive Approximation 26 (2007) 289–315.
  12. A. Graves, Sequence transduction with recurrent neural networks, CoRR abs/1211.3711 (2012). URL: http://arxiv.org/abs/1211.3711. arXiv:1211.3711.
  13. Hierarchical neural story generation, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Melbourne, Australia, 2018, pp. 889–898. URL: https://aclanthology.org/P18-1082. doi:10.18653/v1/P18-1082.
  14. The curious case of neural text degeneration, CoRR abs/1904.09751 (2019). URL: http://arxiv.org/abs/1904.09751. arXiv:1904.09751.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Kunal Suri (4 papers)
  2. Prakhar Mishra (6 papers)
  3. Saumajit Saha (3 papers)
  4. Atul Singh (7 papers)
Citations (2)