Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unveiling the Invisible: Enhanced Detection and Analysis of Deteriorated Areas in Solar PV Modules Using Unsupervised Sensing Algorithms and 3D Augmented Reality (2307.05136v2)

Published 11 Jul 2023 in cs.CV and cs.GR

Abstract: Solar Photovoltaic (PV) is increasingly being used to address the global concern of energy security. However, hot spot and snail trails in PV modules caused mostly by crakes reduce their efficiency and power capacity. This article presents a groundbreaking methodology for automatically identifying and analyzing anomalies like hot spots and snail trails in Solar Photovoltaic (PV) modules, leveraging unsupervised sensing algorithms and 3D Augmented Reality (AR) visualization. By transforming the traditional methods of diagnosis and repair, our approach not only enhances efficiency but also substantially cuts down the cost of PV system maintenance. Validated through computer simulations and real-world image datasets, the proposed framework accurately identifies dirty regions, emphasizing the critical role of regular maintenance in optimizing the power capacity of solar PV modules. Our immediate objective is to leverage drone technology for real-time, automatic solar panel detection, significantly boosting the efficacy of PV maintenance. The proposed methodology could revolutionize solar PV maintenance, enabling swift, precise anomaly detection without human intervention. This could result in significant cost savings, heightened energy production, and improved overall performance of solar PV systems. Moreover, the novel combination of unsupervised sensing algorithms with 3D AR visualization heralds new opportunities for further research and development in solar PV maintenance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. A. Copiaco, Y. Himeur, A. Amira, W. Mansoor, F. Fadli, S. Atalla, and S. S. Sohail, “An innovative deep anomaly detection of building energy consumption using energy time-series images,” Engineering Applications of Artificial Intelligence, vol. 119, p. 105775, 2023.
  2. Y. Himeur, M. Elnour, F. Fadli, N. Meskin, I. Petri, Y. Rezgui, F. Bensaali, and A. Amira, “Ai-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives,” Artificial Intelligence Review, vol. 56, no. 6, pp. 4929–5021, 2023.
  3. A. Alsalemi, Y. Himeur, F. Bensaali, and A. Amira, “An innovative edge-based internet of energy solution for promoting energy saving in buildings,” Sustainable Cities and Society, vol. 78, p. 103571, 2022.
  4. M. Elnour, F. Fadli, Y. Himeur, I. Petri, Y. Rezgui, N. Meskin, and A. M. Ahmad, “Performance and energy optimization of building automation and management systems: Towards smart sustainable carbon-neutral sports facilities,” Renewable and Sustainable Energy Reviews, vol. 162, p. 112401, 2022.
  5. Y. Himeur, M. Elnour, F. Fadli, N. Meskin, I. Petri, Y. Rezgui, F. Bensaali, and A. Amira, “Ai-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives,” Artificial Intelligence Review, pp. 1–93, 2022.
  6. S. A. R. Khan, Z. Yu, A. Belhadi, and A. Mardani, “Investigating the effects of renewable energy on international trade and environmental quality,” Journal of Environmental management, vol. 272, p. 111089, 2020.
  7. S. Benbelkacem, M. Belhocine, A. Bellarbi, N. Zenati-Henda, and M. Tadjine, “Augmented reality for photovoltaic pumping systems maintenance tasks,” Renewable energy, vol. 55, pp. 428–437, 2013.
  8. T. Zhang, K. Nakagawa, and K. Matsumoto, “Evaluating solar photovoltaic power efficiency based on economic dimensions for 26 countries using a three-stage data envelopment analysis,” Applied Energy, vol. 335, p. 120714, 2023.
  9. F. Rashid and M. U. Joardder, “Future options of electricity generation for sustainable development: Trends and prospects,” Engineering Reports, vol. 4, no. 10, p. e12508, 2022.
  10. Z. Xia, Y. Li, R. Chen, D. Sengupta, X. Guo, B. Xiong, and Y. Niu, “Mapping the rapid development of photovoltaic power stations in northwestern china using remote sensing,” Energy Reports, vol. 8, pp. 4117–4127, 2022.
  11. A. Haque, K. V. S. Bharath, M. A. Khan, I. Khan, and Z. A. Jaffery, “Fault diagnosis of photovoltaic modules,” Energy Science & Engineering, vol. 7, no. 3, pp. 622–644, 2019.
  12. Y. Himeur, M. Elnour, F. Fadli, N. Meskin, I. Petri, Y. Rezgui, F. Bensaali, and A. Amira, “Next-generation energy systems for sustainable smart cities: Roles of transfer learning,” Sustainable Cities and Society, p. 104059, 2022.
  13. P. Dwivedi, K. Sudhakar, A. Soni, E. Solomin, and I. Kirpichnikova, “Advanced cooling techniques of pv modules: A state of art,” Case studies in thermal engineering, vol. 21, p. 100674, 2020.
  14. F. ibne Mahmood and G. TamizhMani, “Impact of different backsheets and encapsulant types on potential induced degradation (pid) of silicon pv modules,” Solar Energy, vol. 252, pp. 20–28, 2023.
  15. S. Arosh, K. Ghosh, D. K. Dheer, and S. Prakash, “Composite imagery-based non-uniform illumination sensing for system health monitoring of solar power plants,” Journal of Solar Energy Engineering, vol. 145, no. 1, p. 011009, 2023.
  16. J. Palmer, “Smog casts a shadow on solar power,” Engineering, vol. 5, no. 6, pp. 989–990, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2095809919308598
  17. M. Dhimish, “70% decrease of hot-spotted photovoltaic modules output power loss using novel mppt algorithm,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 12, pp. 2027–2031, 2019.
  18. M. Aghaei, A. Fairbrother, A. Gok, S. Ahmad, S. Kazim, K. Lobato, G. Oreski, A. Reinders, J. Schmitz, M. Theelen et al., “Review of degradation and failure phenomena in photovoltaic modules,” Renewable and Sustainable Energy Reviews, vol. 159, p. 112160, 2022.
  19. T. Trongtirakul and S. Agaian, “Unsupervised and optimized thermal image quality enhancement and visual surveillance applications,” Signal Processing: Image Communication, vol. 105, p. 116714, 2022.
  20. Y. Himeur, K. Ghanem, A. Alsalemi, F. Bensaali, and A. Amira, “Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives,” Applied Energy, vol. 287, p. 116601, 2021.
  21. Y. Himeur, A. Alsalemi, F. Bensaali, and A. Amira, “A novel approach for detecting anomalous energy consumption based on micro-moments and deep neural networks,” Cognitive Computation, vol. 12, pp. 1381–1401, 2020.
  22. M. Fahimipirehgalin, E. Trunzer, M. Odenweller, and B. Vogel-Heuser, “Automatic visual leakage detection and localization from pipelines in chemical process plants using machine vision techniques,” Engineering, vol. 7, no. 6, pp. 758–776, 2021.
  23. C. Henry, S. Poudel, S.-W. Lee, and H. Jeong, “Automatic detection system of deteriorated pv modules using drone with thermal camera,” Applied Sciences, vol. 10, no. 11, p. 3802, 2020.
  24. K. Masita, A. Hasan, and T. Shongwe, “75mw ac pv module field anomaly detection using drone-based ir orthogonal images with res-cnn3 detector,” IEEE Access, vol. 10, pp. 83 711–83 722, 2022.
  25. A. Al-Kababji, A. Alsalemi, Y. Himeur, R. Fernandez, F. Bensaali, A. Amira, and N. Fetais, “Interactive visual study for residential energy consumption data,” Journal of Cleaner Production, vol. 366, p. 132841, 2022.
  26. D. Mourtzis, V. Siatras, and J. Angelopoulos, “Real-time remote maintenance support based on augmented reality (ar),” Applied Sciences, vol. 10, no. 5, 2020. [Online]. Available: https://www.mdpi.com/2076-3417/10/5/1855
  27. O. A. Al-Shahri, F. B. Ismail, M. Hannan, M. H. Lipu, A. Q. Al-Shetwi, R. Begum, N. F. Al-Muhsen, and E. Soujeri, “Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review,” Journal of Cleaner Production, vol. 284, p. 125465, 2021.
  28. A. Al-Kababji, A. Alsalemi, Y. Himeur, F. Bensaali, A. Amira, R. Fernandez, and N. Fetais, “Energy data visualizations on smartphones for triggering behavioral change: Novel vs. conventional,” in 2020 2nd Global Power, Energy and Communication Conference (GPECOM).   IEEE, 2020, pp. 312–317.
  29. S. Benbelkacem, A. Oulefki, S. Agaian, N. Zenati-Henda, T. Trongtirakul, D. Aouam, M. Masmoudi, and M. Zemmouri, “Covi3d: Automatic covid-19 ct image-based classification and visualization platform utilizing virtual and augmented reality technologies,” Diagnostics, vol. 12, no. 3, p. 649, 2022.
  30. N. Zenati, M. Hamidia, A. Bellarbi, and S. Benbelkacem, “E-maintenance for photovoltaic power system in algeria,” in 2015 IEEE International Conference on Industrial Technology (ICIT), 2015, pp. 2594–2599.
  31. M. Alsafasfeh, I. Abdel-Qader, B. Bazuin, Q. Alsafasfeh, and W. Su, “Unsupervised fault detection and analysis for large photovoltaic systems using drones and machine vision,” Energies, vol. 11, no. 9, p. 2252, 2018.
  32. A. Shihavuddin, M. R. A. Rashid, M. H. Maruf, M. A. Hasan, M. A. ul Haq, R. H. Ashique, and A. Al Mansur, “Image based surface damage detection of renewable energy installations using a unified deep learning approach,” Energy Reports, vol. 7, pp. 4566–4576, 2021.
  33. I. Zyout and A. Oatawneh, “Detection of pv solar panel surface defects using transfer learning of the deep convolutional neural networks,” in 2020 Advances in Science and Engineering Technology International Conferences (ASET).   IEEE, 2020, pp. 1–4.
  34. K. A. Abuqaaud and A. Ferrah, “A novel technique for detecting and monitoring dust and soil on solar photovoltaic panel,” in 2020 Advances in Science and Engineering Technology International Conferences (ASET).   IEEE, 2020, pp. 1–6.
  35. R. Pierdicca, M. Paolanti, A. Felicetti, F. Piccinini, and P. Zingaretti, “Automatic faults detection of photovoltaic farms: solair, a deep learning-based system for thermal images,” Energies, vol. 13, no. 24, p. 6496, 2020.
  36. E. Alfaro-Mejia, H. Loaiza-Correa, E. Franco-Mejia, A. D. Restrepo-Giron, and S. E. Nope-Rodriguez, “Dataset for recognition of snail trails and hot spot failures in monocrystalline si solar panels,” Data in brief, vol. 26, p. 104441, 2019.
  37. S. Gallardo-Saavedra, E. Franco-Mejia, L. Hernández-Callejo, Ó. Duque-Pérez, H. Loaiza-Correa, and E. Alfaro-Mejia, “Aerial thermographic inspection of photovoltaic plants: analysis and selection of the equipment,” in Proceedings of the 2017 Proceedings ISES Solar World Congress, IEA SHC, Abu Dhabi, UAE, vol. 29, 2017.
  38. Roboflow, “Solar panel infrared images dataset,” https://universe.roboflow.com/dataset/solar-panel-infrared-images-v5, February 6 2023, exported via Roboflow on July 27, 2022.
  39. RoboFlow, “solar-panel-infrared-images - v5 2022-07-27 7:03pm,” RoboFlow, 2023, exported from roboflow.com on February 6, 2023 at 8:54 AM GMT. [Online]. Available: https://universe.roboflow.com
  40. J. J. Vega Díaz, M. Vlaminck, D. Lefkaditis, S. A. Orjuela Vargas, and H. Luong, “Solar panel detection within complex backgrounds using thermal images acquired by uavs,” Sensors, vol. 20, no. 21, p. 6219, 2020.
  41. D. Systèmes, “Solidworks,” https://www.solidworks.com/fr, Accessed 2023.
  42. B. Foundation, “Blender,” https://www.blender.org/, Accessed 2023.
  43. P. Inc., “Vuforia,” https://www.ptc.com/en/products/augmented-reality/vuforia, Accessed 2023.
  44. U. Technologies, “Unity,” https://www.unity.com/, Accessed 2023.
  45. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment anything,” arXiv:2304.02643, 2023.
  46. I. Arganda-Carreras, V. Kaynig, C. Rueden, K. W. Eliceiri, J. Schindelin, A. Cardona, and H. Sebastian Seung, “Trainable weka segmentation: a machine learning tool for microscopy pixel classification,” Bioinformatics, vol. 33, no. 15, pp. 2424–2426, 2017.
  47. S. Benbelkacem, A. Oulefki, S. Agaian, T. Trongtirakul, D. Aouam, N. Zenati-Henda, and K. Amara, “Lung infection region quantification, recognition, and virtual reality rendering of ct scan of covid-19,” in Multimodal Image Exploitation and Learning 2021, vol. 11734.   SPIE, 2021, pp. 123–132.
  48. A. Oulefki, S. Agaian, T. Trongtirakul, and A. K. Laouar, “Automatic covid-19 lung infected region segmentation and measurement using ct-scans images,” Pattern recognition, vol. 114, p. 107747, 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.