Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Optimizing Feature Extraction for Symbolic Music (2307.05107v1)

Published 11 Jul 2023 in cs.SD, cs.MM, and eess.AS

Abstract: This paper presents a comprehensive investigation of existing feature extraction tools for symbolic music and contrasts their performance to determine the set of features that best characterizes the musical style of a given music score. In this regard, we propose a novel feature extraction tool, named musif, and evaluate its efficacy on various repertoires and file formats, including MIDI, MusicXML, and **kern. Musif approximates existing tools such as jSymbolic and music21 in terms of computational efficiency while attempting to enhance the usability for custom feature development. The proposed tool also enhances classification accuracy when combined with other sets of features. We demonstrate the contribution of each set of features and the computational resources they require. Our findings indicate that the optimal tool for feature extraction is a combination of the best features from each tool rather than those of a single one. To facilitate future research in music information retrieval, we release the source code of the tool and benchmarks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. K. C. Kempfert and S. W. K. Wong, “Where Does Haydn End and Mozart Begin? Composer Classification of String Quartets,” Journal of New Music Research, vol. 49, no. 5, pp. 457–476, Oct. 2020.
  2. W. Herlands, R. Der, Y. Greenberg, and S. Levin, “A Machine Learning Approach to Musically Meaningful Homogeneous Style Classification,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, no. 1, Jun. 2014.
  3. J. Qiu, C. L. P. Chen, and T. Zhang, “A Novel Multi-Task Learning Method for Symbolic Music Emotion Recognition,” 2022.
  4. M. Zeng, X. Tan, R. Wang, Z. Ju, T. Qin, and T.-Y. Liu, “MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training,” FINDINGS, 2021.
  5. D. Jeong and J. Nam, “Note Intensity Estimation of Piano Recordings by Score-informed NMF,” 2017, p. 8.
  6. F. Simonetta, S. Ntalampiras, and F. Avanzini, “Acoustics-Specific Piano Velocity Estimation,” in Proceedings of the IEEE MMSP 2022, 2022.
  7. H. Vinet, “The Representation Levels of Music Information,” in Computer Music Modeling and Retrieval.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 193–209.
  8. F. Simonetta, S. Ntalampiras, and F. Avanzini, “Multimodal Music Information Processing and Retrieval: Survey and Future Challenges,” in Proceedings of 2019 International Workshop on Multilayer Music Representation and Processing.   Milan, Italy: IEEE Conference Publishing Services, 2019, pp. 10–18.
  9. ——, “Audio-to-Score Alignment Using Deep Automatic Music Transcription,” in Proceeddings of the IEEE MMSP 2021, 2021.
  10. A. Llorens and A. Torrente, “Constructing opera seria in the Iberian Courts: Metastasian Repertoire for Spain and Portugal,” Anuario Musical, vol. 76, pp. 73–110, Jul. 2021.
  11. F. Moss, W. Fernandes de Souza, and M. Rohrmeier, “Harmony and Form in Brazilian Choro: A Corpus-Driven Approach to Musical Style Analysis,” Journal of New Music Research, vol. 49, pp. 416–437, 2020.
  12. M. Neuwirth, D. Harasim, F. C. Moss, and M. Rohrmeier, “The Annotated Beethoven Corpus (ABC): A Dataset of Harmonic Analyses of All Beethoven String Quartets,” Frontiers in Digital Humanities, vol. 5, 2018.
  13. J. Hentschel, M. Neuwirth, and M. Rohrmeier, “The Annotated Mozart Sonatas: Score, Harmony, and Cadence,” Transactions of the International Society for Music Information Retrieval, vol. 4, no. 1, pp. 67–80, May 2021.
  14. C. McKay, J. Cumming, and I. Fujinaga, “jSymbolic 2.2: Extracting Features from Symbolic Music for Use in Musicological and MIR Research,” in Proceedings of the 19th International Society for Music Information Retrieval Conference, 2018, pp. 348–354.
  15. M. S. Cuthbert, C. Ariza, and L. Friedland, “Feature Extraction and Machine Learning on Symbolic Music Using the Music21 Toolkit,” in Proceedings of the 12th International Society for Music Information Retrieval Conference, ISMIR 2011, Miami, Florida, USA, October 24-28, 2011.   University of Miami, 2011, pp. 387–392.
  16. A. Torrente and A. Llorens, “The Musicology Lab: Teamwork and the Musicological Toolbox,” in Music Encoding Conference Proceedings 2021, 19–22 July, 2021 University of Alicante (Spain): Onsite & Online, 2022, ISBN 978-84-1302-173-7, págs. 9-20.   Universidad de Alicante / Universitat d’Alacant, 2022, pp. 9–20. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=8463477
  17. C. McKay and I. Fujinaga, “jSymbolic: A Feature Extractor for MIDI Files,” in Proceedings of the 2006 International Computer Music Conference, ICMC 2006, New Orleans, Louisiana, USA, November 6-11, 2006.   Michigan Publishing, 2006. [Online]. Available: https://hdl.handle.net/2027/spo.bbp2372.2006.063
  18. M. S. Cuthbert and C. Ariza, “Music21: A Toolkit for Computer-Aided Musicology and Symbolic Music Data,” International Society for Music Information Retrieval Conference (ISMIR 2010), pp. 637–642, 2010. [Online]. Available: http://ismir2010.ismir.net/proceedings/ismir2010-108.pdf
  19. A. Llorens, F. Simonetta, M. Serrano, and Á. Torrente, “Musif: A Python Package for Symbolic Music Feature Extraction,” in Proceedings of SMC 2023 - Sound and Music Computing Conference, Stockholm, 2023, June, pp. 132–138.
  20. M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter, “Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning,” arXiv, Tech. Rep. arXiv:2007.04074, Sep. 2021. [Online]. Available: http://arxiv.org/abs/2007.04074
  21. F. Foscarin, A. McLeod, P. Rigaux, F. Jacquemard, and M. Sakai, “ASAP: A Dataset of Aligned Scores and Performances for Piano Transcription,” in Proceedings of the 21st International Society for Music Information Retrieval, 2020, Proceedings.
  22. C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-Z. A. Huang, S. Dieleman, E. Elsen, J. H. Engel, and D. Eck, “Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset.” in International Conference on Learning Representations, 2019.
  23. F. Simonetta, F. Carnovalini, N. Orio, and A. Rodà, “Symbolic Music Similarity through a Graph-based Representation,” in Proceedings of the Audio Mostly 2018 on Sound in Immersion and Emotion - AM’18.   ACM Press, 2018.
  24. J. Cumming, C. McKay, J. Stuchbery, and I. Fujinaga, “Methodologies for Creating Symbolic Corpora of Western Music Before 1600,” in Proceedings of the ISMIR.   Paris, France: ISMIR, Sep. 2018, pp. 491–498.
  25. C. S. Sapp, “Online Database of Scores in the Humdrum File Format,” in Proceedings of the 6th International Conference on Music Information Retrieval, 2005, p. 2.
  26. J. Hentschel and M. Rohrmeier, “Creating and Evaluating an Annotated Corpus Using the Library Ms3,” 2020.
Citations (2)

Summary

We haven't generated a summary for this paper yet.