Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tree-Based Scenario Classification: A Formal Framework for Coverage Analysis on Test Drives of Autonomous Vehicles (2307.05106v1)

Published 11 Jul 2023 in cs.SE and cs.LO

Abstract: Scenario-based testing is envisioned as a key approach for the safety assurance of autonomous vehicles. In scenario-based testing, relevant (driving) scenarios are the basis of tests. Many recent works focus on specification, variation, generation and execution of individual scenarios. In this work, we address the open challenges of classifying sets of scenarios and measuring coverage of theses scenarios in recorded test drives. Technically, we define logic-based classifiers that compute features of scenarios on complex data streams and combine these classifiers into feature trees that describe sets of scenarios. We demonstrate the expressiveness and effectiveness of our approach by defining a scenario classifier for urban driving and evaluating it on data recorded from simulations.

Summary

We haven't generated a summary for this paper yet.