Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangled Contrastive Image Translation for Nighttime Surveillance (2307.05038v1)

Published 11 Jul 2023 in cs.CV

Abstract: Nighttime surveillance suffers from degradation due to poor illumination and arduous human annotations. It is challengable and remains a security risk at night. Existing methods rely on multi-spectral images to perceive objects in the dark, which are troubled by low resolution and color absence. We argue that the ultimate solution for nighttime surveillance is night-to-day translation, or Night2Day, which aims to translate a surveillance scene from nighttime to the daytime while maintaining semantic consistency. To achieve this, this paper presents a Disentangled Contrastive (DiCo) learning method. Specifically, to address the poor and complex illumination in the nighttime scenes, we propose a learnable physical prior, i.e., the color invariant, which provides a stable perception of a highly dynamic night environment and can be incorporated into the learning pipeline of neural networks. Targeting the surveillance scenes, we develop a disentangled representation, which is an auxiliary pretext task that separates surveillance scenes into the foreground and background with contrastive learning. Such a strategy can extract the semantics without supervision and boost our model to achieve instance-aware translation. Finally, we incorporate all the modules above into generative adversarial networks and achieve high-fidelity translation. This paper also contributes a new surveillance dataset called NightSuR. It includes six scenes to support the study on nighttime surveillance. This dataset collects nighttime images with different properties of nighttime environments, such as flare and extreme darkness. Extensive experiments demonstrate that our method outperforms existing works significantly. The dataset and source code will be released on GitHub soon.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. K. Gegenfurtner, H. Mayser, and L. Sharpe, “Seeing movement in the dark,” Nature, vol. 398, no. 6727, pp. 475–476, 1999.
  2. C. Zheng, D. Shi, and W. Shi, “Adaptive unfolding total variation network for low-light image enhancement,” in Proc. IEEE International Conference on Computer Vision, October 2021, pp. 4439–4448.
  3. L. Tang, X. Xiang, H. Zhang, M. Gong, and J. Ma, “Divfusion: Darkness-free infrared and visible image fusion,” Information Fusion, vol. 91, pp. 477–493, 2023.
  4. H. Li, X.-J. Wu, and J. Kittler, “Mdlatlrr: A novel decomposition method for infrared and visible image fusion,” IEEE Transactions on Image Processing, vol. 29, pp. 4733–4746, 2020.
  5. W. Ren, S. Liu, L. Ma, Q. Xu, X. Xu, X. Cao, J. Du, and M.-H. Yang, “Low-light image enhancement via a deep hybrid network,” IEEE Transactions on Image Processing, vol. 28, no. 9, pp. 4364–4375, 2019.
  6. Y. Jiang, X. Gong, D. Liu, Y. Cheng, C. Fang, X. Shen, J. Yang, P. Zhou, and Z. Wang, “Enlightengan: Deep light enhancement without paired supervision,” IEEE Transactions on Image Processing, vol. 30, pp. 2340–2349, 2021.
  7. M. Lamba, M. V. A. S. Kumar, and K. Mitra, “Real-time restoration of dark stereo images,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), January 2023, pp. 4914–4924.
  8. X. Guo, Y. Li, and H. Ling, “Lime: Low-light image enhancement via illumination map estimation,” IEEE Transactions on Image Processing, vol. 26, no. 2, pp. 982–993, 2016.
  9. M. Li, J. Liu, W. Yang, X. Sun, and Z. Guo, “Structure-revealing low-light image enhancement via robust retinex model,” IEEE Transactions on Image Processing, vol. 27, no. 6, pp. 2828–2841, 2018.
  10. K. Xu, X. Yang, B. Yin, and R. Lau, “Learning to restore low-light images via decomposition-and-enhancement,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 2281–2290.
  11. C. Guo, C. Li, J. Guo, C. C. Loy, J. Hou, S. Kwong, and R. Cong, “Zero-reference deep curve estimation for low-light image enhancement,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 1780–1789.
  12. W. Wu, J. Weng, P. Zhang, X. Wang, W. Yang, and J. Jiang, “Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 5901–5910.
  13. A. Sharma and R. T. Tan, “Nighttime visibility enhancement by increasing the dynamic range and suppression of light effects,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11 977–11 986.
  14. Y. Jin, W. Yang, and R. T. Tan, “Unsupervised night image enhancement: When layer decomposition meets light-effects suppression,” in European Conference on Computer Vision.   Springer, 2022, pp. 404–421.
  15. A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, and D. Salesin, “Image analogies,” in Proc. Annual Conference on Computer Graphics and Interactive Techniques, 2001, pp. 327–340.
  16. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in Neural Information Processing Systems, vol. 27, 2014.
  17. H.-Y. Lee, H.-Y. Tseng, J.-B. Huang, M. Singh, and M.-H. Yang, “Diverse image-to-image translation via disentangled representations,” in Proc. European Conference on Computer Vision, 2018, pp. 35–51.
  18. D. Saxena, T. Kulshrestha, J. Cao, and S.-C. Cheung, “Multi-constraint adversarial networks for unsupervised image-to-image translation,” IEEE Transactions on Image Processing, vol. 31, pp. 1601–1612, 2022.
  19. E. Ntavelis, M. Shahbazi, I. Kastanis, R. Timofte, M. Danelljan, and L. Van Gool, “Arbitrary-scale image synthesis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 11 533–11 542.
  20. C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet, and M. Norouzi, “Palette: Image-to-image diffusion models,” in ACM SIGGRAPH 2022 Conference Proceedings, 2022, pp. 1–10.
  21. J.-Y. Zhu, T. Park, P. Isola, and A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proc. IEEE International Conference on Computer Vision, 2017, pp. 2223–2232.
  22. I. Anokhin, P. Solovev, D. Korzhenkov, A. Kharlamov, T. Khakhulin, A. Silvestrov, S. Nikolenko, V. Lempitsky, and G. Sterkin, “High-resolution daytime translation without domain labels,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 7488–7497.
  23. J. Han, M. Shoeiby, L. Petersson, and M. A. Armin, “Dual contrastive learning for unsupervised image-to-image translation,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition Workshops, June 2021, pp. 746–755.
  24. Y. Xu, S. Xie, W. Wu, K. Zhang, M. Gong, and K. Batmanghelich, “Maximum spatial perturbation consistency for unpaired image-to-image translation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 18 311–18 320.
  25. T. Park, A. Efros, R. Zhang, and J.-Y. Zhu, “Contrastive learning for unpaired image-to-image translation,” in European Conference on Computer Vision, 2020, pp. 319–345.
  26. R. Liu, Y. Ge, C. L. Choi, X. Wang, and H. Li, “Divco: Diverse conditional image synthesis via contrastive generative adversarial network,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2021, pp. 16 377–16 386.
  27. C. Zheng, T.-J. Cham, and J. Cai, “The spatially-correlative loss for various image translation tasks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 16 407–16 417.
  28. W. Wang, W. Zhou, J. Bao, D. Chen, and H. Li, “Instance-wise hard negative example generation for contrastive learning in unpaired image-to-image translation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 14 020–14 029.
  29. C. Jung, G. Kwon, and J. C. Ye, “Exploring patch-wise semantic relation for contrastive learning in image-to-image translation tasks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 18 260–18 269.
  30. X. Hu, X. Zhou, Q. Huang, Z. Shi, L. Sun, and Q. Li, “Qs-attn: Query-selected attention for contrastive learning in i2i translation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 18 291–18 300.
  31. F. Zhan, J. Zhang, Y. Yu, R. Wu, and S. Lu, “Modulated contrast for versatile image synthesis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 18 280–18 290.
  32. A. Anoosheh, T. Sattler, R. Timofte, M. Pollefeys, and L. Van Gool, “Night-to-day image translation for retrieval-based localization,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 5958–5964.
  33. Z. Zheng, Y. Wu, X. Han, and J. Shi, “Forkgan: Seeing into the rainy night,” in European conference on computer vision.   Springer, 2020, pp. 155–170.
  34. S. Mo, M. Cho, and J. Shin, “Instagan: Instance-aware image-to-image translation,” in International Conference on Learning Representations, 2018.
  35. Z. Shen, M. Huang, J. Shi, X. Xue, and T. S. Huang, “Towards instance-level image-to-image translation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 3683–3692.
  36. D. Bhattacharjee, S. Kim, G. Vizier, and M. Salzmann, “Dunit: Detection-based unsupervised image-to-image translation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4787–4796.
  37. S. Jeong, Y. Kim, E. Lee, and K. Sohn, “Memory-guided unsupervised image-to-image translation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 6558–6567.
  38. S. Kim, J. Baek, J. Park, G. Kim, and S. Kim, “Instaformer: Instance-aware image-to-image translation with transformer,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 18 321–18 331.
  39. J.-M. Geusebroek, R. Van den Boomgaard, A. W. M. Smeulders, and H. Geerts, “Color invariance,” IEEE Transactions on Pattern analysis and machine intelligence, vol. 23, no. 12, pp. 1338–1350, 2001.
  40. P. Kubelka, “Ein beitrag zur optik der farbanstriche (contribution to the optic of paint),” Zeitschrift fur technische Physik, vol. 12, pp. 593–601, 1931.
  41. X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least squares generative adversarial networks,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.
  42. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  43. J. Han, M. Shoeiby, L. Petersson, and M. A. Armin, “Dual contrastive learning for unsupervised image-to-image translation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 746–755.
  44. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” Advances in neural information processing systems, vol. 28, 2015.
  45. L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image segmentation,” arXiv preprint arXiv:1706.05587, 2017.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Guanzhou Lan (4 papers)
  2. Bin Zhao (107 papers)
  3. Xuelong Li (268 papers)

Summary

We haven't generated a summary for this paper yet.