Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerated Discovery of Machine-Learned Symmetries: Deriving the Exceptional Lie Groups G2, F4 and E6 (2307.04891v1)

Published 10 Jul 2023 in hep-th, cs.LG, hep-ph, math-ph, math.GR, and math.MP

Abstract: Recent work has applied supervised deep learning to derive continuous symmetry transformations that preserve the data labels and to obtain the corresponding algebras of symmetry generators. This letter introduces two improved algorithms that significantly speed up the discovery of these symmetry transformations. The new methods are demonstrated by deriving the complete set of generators for the unitary groups U(n) and the exceptional Lie groups $G_2$, $F_4$, and $E_6$. A third post-processing algorithm renders the found generators in sparse form. We benchmark the performance improvement of the new algorithms relative to the standard approach. Given the significant complexity of the exceptional Lie groups, our results demonstrate that this machine-learning method for discovering symmetries is completely general and can be applied to a wide variety of labeled datasets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. doi:10.1073/pnas.93.25.14256. URL https://doi.org/10.1073/pnas.93.25.14256
  2. arXiv:hep-ph/9705479.
  3. arXiv:1811.04279, doi:10.1142/9789813233348_0007.
  4. doi:10.1016/0370-1573(81)90092-2.
  5. P. Ramond, Exceptional groups and physics (2003). arXiv:hep-th/0301050.
  6. arXiv:hep-th/9812205, doi:10.4310/ATMP.1999.v3.n2.a3.
  7. arXiv:hep-th/0409191, doi:10.1016/j.physrep.2003.10.017.
  8. arXiv:hep-th/0107177, doi:10.4310/ATMP.2002.v6.n1.a1.
  9. arXiv:1507.05965, doi:10.1007/JHEP04(2016)100.
  10. doi:10.1007/978-4-431-54270-4_34.
  11. arXiv:1802.02905, doi:10.1103/PhysRevD.97.056015.
  12. doi:10.1051/epjconf/201713713013.
  13. doi:10.1016/0370-2693(76)90417-2.
  14. arXiv:1903.04977, doi:10.3389/fphy.2019.00076.
  15. doi:10.1103/PhysRevLett.36.775.
  16. doi:10.1103/PhysRevLett.45.859.
  17. doi:10.1103/PhysRevLett.124.010508. URL https://link.aps.org/doi/10.1103/PhysRevLett.124.010508
  18. arXiv:2003.13679.
  19. arXiv:2011.04698, doi:10.1103/PhysRevLett.126.180604.
  20. arXiv:2103.06115, doi:10.21468/SciPostPhys.11.1.014.
  21. arXiv:2108.04253, doi:10.21468/SciPostPhys.12.6.188.
  22. arXiv:2109.09721, doi:10.1103/PhysRevLett.128.180201.
  23. arXiv:2112.05722, doi:10.1103/PhysRevD.105.096031.
  24. arXiv:2112.07673, doi:10.1103/PhysRevD.105.096030.
  25. arXiv:2210.04345, doi:10.48550/ARXIV.2210.04345. URL https://arxiv.org/abs/2210.04345
  26. arXiv:2301.05638, doi:10.1088/2632-2153/acd989.
  27. doi:10.3390/sym15071352. URL https://www.mdpi.com/2073-8994/15/7/1352
  28. arXiv:2302.05383.
  29. arXiv:2011.00871, doi:10.1016/j.physletb.2021.136297.
  30. arXiv:hep-lat/0302023, doi:10.1016/S0550-3213(03)00571-6.
  31. arXiv:1112.4963, doi:10.1103/PhysRevD.85.054501.
  32. arXiv:1401.3968, doi:10.1103/PhysRevD.89.014510.
  33. arXiv:1605.05920, doi:10.1016/j.cpc.2016.09.010.
  34. arXiv:1805.06739, doi:10.1007/s00006-018-0899-y.
  35. arXiv:1806.09450, doi:10.1142/S0217751X1850118X.
  36. doi:10.7546/jgsp-61-2021-1-16.
  37. arXiv:math/0105155, doi:10.1090/S0273-0979-01-00934-X.
  38. arXiv:1412.6980.
  39. arXiv:0705.3978, doi:10.4310/ATMP.2008.v12.n4.a6.
  40. arXiv:0710.0356, doi:10.1063/1.2830522.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com