Predicting Outcomes in Long COVID Patients with Spatiotemporal Attention (2307.04770v1)
Abstract: Long COVID is a general term of post-acute sequelae of COVID-19. Patients with long COVID can endure long-lasting symptoms including fatigue, headache, dyspnea and anosmia, etc. Identifying the cohorts with severe long-term complications in COVID-19 could benefit the treatment planning and resource arrangement. However, due to the heterogeneous phenotype presented in long COVID patients, it is difficult to predict their outcomes from their longitudinal data. In this study, we proposed a spatiotemporal attention mechanism to weigh feature importance jointly from the temporal dimension and feature space. Considering that medical examinations can have interchangeable orders in adjacent time points, we restricted the learning of short-term dependency with a Local-LSTM and the learning of long-term dependency with the joint spatiotemporal attention. We also compared the proposed method with several state-of-the-art methods and a method in clinical practice. The methods are evaluated on a hard-to-acquire clinical dataset of patients with long COVID. Experimental results show the Local-LSTM with joint spatiotemporal attention outperformed related methods in outcome prediction. The proposed method provides a clinical tool for the severity assessment of long COVID.
- J. B. Soriano, S. Murthy, J. C. Marshall, P. Relan, J. V. Diaz, W. C. C. D. W. Group et al., “A clinical case definition of post-covid-19 condition by a delphi consensus,” The Lancet Infectious Diseases, 2021.
- B. Blomberg, K. G.-I. Mohn, K. A. Brokstad, F. Zhou, D. W. Linchausen, B.-A. Hansen, S. Lartey, T. B. Onyango, K. Kuwelker, M. Sævik et al., “Long covid in a prospective cohort of home-isolated patients,” Nature medicine, vol. 27, no. 9, pp. 1607–1613, 2021.
- E. Pfaff, C. Madlock-Brown, J. M. Baratta, A. Bhatia, H. Davis, A. T. Girvin, E. Hill, L. Kelly, K. Kostka, J. Loomba et al., “Coding long covid: Characterizing a new disease through an icd-10 lens,” medRxiv, 2022.
- X. Zou, S. Li, M. Fang, M. Hu, Y. Bian, J. Ling, S. Yu, L. Jing, D. Li, and J. Huang, “Acute physiology and chronic health evaluation ii score as a predictor of hospital mortality in patients of coronavirus disease 2019,” Critical care medicine, vol. 48, no. 8, p. e657, 2020.
- M. C. Sneller, C. J. Liang, A. R. Marques, J. Y. Chung, S. M. Shanbhag, J. R. Fontana, H. Raza, O. Okeke, R. L. Dewar, B. P. Higgins et al., “A longitudinal study of covid-19 sequelae and immunity: baseline findings,” Annals of Internal Medicine, 2022.
- E. R. Pfaff, A. T. Girvin, T. D. Bennett, A. Bhatia, I. M. Brooks, R. R. Deer, J. P. Dekermanjian, S. E. Jolley, M. G. Kahn, K. Kostka et al., “Identifying who has long covid in the usa: a machine learning approach using n3c data,” The Lancet Digital Health, 2022.
- J. Cheng, J. Sollee, C. Hsieh, H. Yue, N. Vandal, J. Shanahan, J. W. Choi, T. M. L. Tran, K. Halsey, F. Iheanacho et al., “Covid-19 mortality prediction in the intensive care unit with deep learning based on longitudinal chest x-rays and clinical data,” European radiology, pp. 1–11, 2022.
- O. Morin, M. Vallières, S. Braunstein, J. B. Ginart, T. Upadhaya, H. C. Woodruff, A. Zwanenburg, A. Chatterjee, J. E. Villanueva-Meyer, G. Valdes et al., “An artificial intelligence framework integrating longitudinal electronic health records with real-world data enables continuous pan-cancer prognostication,” Nature Cancer, vol. 2, no. 7, pp. 709–722, 2021.
- S. T. Kim, L. Goli, M. Paschali, A. Khakzar, M. Keicher, T. Czempiel, E. Burian, R. Braren, N. Navab, and T. Wendler, “Longitudinal quantitative assessment of covid-19 infection progression from chest cts,” in International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2021, pp. 273–282.
- A. Ganjdanesh, J. Zhang, E. Y. Chew, Y. Ding, H. Huang, and W. Chen, “Longl-net: temporal correlation structure guided deep learning model to predict longitudinal age-related macular degeneration severity,” PNAS nexus, vol. 1, no. 1, p. pgab003, 2022.
- Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel, “Learning to diagnose with lstm recurrent neural networks,” arXiv preprint arXiv:1511.03677, 2015.
- T. Wang, Y. Tian, and R. G. Qiu, “Long short-term memory recurrent neural networks for multiple diseases risk prediction by leveraging longitudinal medical records,” IEEE journal of biomedical and health informatics, vol. 24, no. 8, pp. 2337–2346, 2019.
- E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun, “Doctor ai: Predicting clinical events via recurrent neural networks,” in Machine learning for healthcare conference. PMLR, 2016, pp. 301–318.
- M. Nguyen, T. He, L. An, D. C. Alexander, J. Feng, B. T. Yeo, A. D. N. Initiative et al., “Predicting alzheimer’s disease progression using deep recurrent neural networks,” NeuroImage, vol. 222, p. 117203, 2020.
- F. Altay, G. R. Sánchez, Y. James, S. V. Faraone, S. Velipasalar, and A. Salekin, “Preclinical stage alzheimer’s disease detection using magnetic resonance image scans,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 17, 2021, pp. 15 088–15 097.
- C. Lee, J. Yoon, and M. Van Der Schaar, “Dynamic-deephit: A deep learning approach for dynamic survival analysis with competing risks based on longitudinal data,” IEEE Transactions on Biomedical Engineering, vol. 67, no. 1, pp. 122–133, 2019.
- O. Nitski, A. Azhie, F. A. Qazi-Arisar, X. Wang, S. Ma, L. Lilly, K. D. Watt, J. Levitsky, S. K. Asrani, D. S. Lee et al., “Long-term mortality risk stratification of liver transplant recipients: real-time application of deep learning algorithms on longitudinal data,” The Lancet Digital Health, vol. 3, no. 5, pp. e295–e305, 2021.
- F. Yang, J. Zhang, W. Chen, Y. Lai, Y. Wang, and Q. Zou, “Deepmpm: a mortality risk prediction model using longitudinal ehr data,” BMC bioinformatics, vol. 23, no. 1, pp. 1–27, 2022.
- M. Bocchino, R. Lieto, F. Romano, G. Sica, G. Bocchini, E. Muto, L. Capitelli, D. Sequino, T. Valente, G. Fiorentino et al., “Chest ct-based assessment of 1-year outcomes after moderate covid-19 pneumonia,” Radiology, p. 220019, 2022.
- B. Sankaran, H. Mi, Y. Al-Onaizan, and A. Ittycheriah, “Temporal attention model for neural machine translation,” arXiv preprint arXiv:1608.02927, 2016.
- X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7794–7803.
- S. Hochreiter, “The vanishing gradient problem during learning recurrent neural nets and problem solutions,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107–116, 1998.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
- Z. Wang, Y. Ma, Z. Liu, and J. Tang, “R-transformer: Recurrent neural network enhanced transformer,” arXiv preprint arXiv:1907.05572, 2019.
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
- W. A. Knaus, E. A. Draper, D. P. Wagner, and J. E. Zimmerman, “Apache ii: a severity of disease classification system.” Critical care medicine, vol. 13, no. 10, pp. 818–829, 1985.
- M. Waters, J. A. McKinnell, A. C. Kalil, G. S. Martin, T. G. Buchman, W. Theess, X. Yang, A. N. Lekkerkerker, T. Staton, C. M. Rosenberger et al., “Astegolimab or efmarodocokin alfa in patients with severe covid-19 pneumonia: A randomized, phase 2 trial,” Critical care medicine, vol. 51, no. 1, pp. 103–116, 2023.
- M. A. Warren, Z. Zhao, T. Koyama, J. A. Bastarache, C. M. Shaver, M. W. Semler, T. W. Rice, M. A. Matthay, C. S. Calfee, and L. B. Ware, “Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ards,” Thorax, vol. 73, no. 9, pp. 840–846, 2018.
- A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.
- S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint arXiv:1609.04747, 2016.
- Degan Hao (3 papers)
- Mohammadreza Negahdar (2 papers)