Maximum values of the edge Mostar index in tricyclic graphs
Abstract: For a graph $G$, the edge Mostar index of $G$ is the sum of $|m_u(e|G)-m_v(e|G)|$ over all edges $e=uv$ of $G$, where $m_u(e|G)$ denotes the number of edges of $G$ that have a smaller distance in $G$ to $u$ than to $v$, and analogously for $m_v(e|G)$. This paper mainly studies the problem of determining the graphs that maximize the edge Mostar index among tricyclic graphs. To be specific, we determine a sharp upper bound for the edge Mostar index on tricyclic graphs and identify the graphs that attain the bound.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.