Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Match Pair Retrieval for Large-scale UAV Images via Graph Indexed Global Descriptor (2307.04520v1)

Published 10 Jul 2023 in cs.CV

Abstract: SfM (Structure from Motion) has been extensively used for UAV (Unmanned Aerial Vehicle) image orientation. Its efficiency is directly influenced by feature matching. Although image retrieval has been extensively used for match pair selection, high computational costs are consumed due to a large number of local features and the large size of the used codebook. Thus, this paper proposes an efficient match pair retrieval method and implements an integrated workflow for parallel SfM reconstruction. First, an individual codebook is trained online by considering the redundancy of UAV images and local features, which avoids the ambiguity of training codebooks from other datasets. Second, local features of each image are aggregated into a single high-dimension global descriptor through the VLAD (Vector of Locally Aggregated Descriptors) aggregation by using the trained codebook, which remarkably reduces the number of features and the burden of nearest neighbor searching in image indexing. Third, the global descriptors are indexed via the HNSW (Hierarchical Navigable Small World) based graph structure for the nearest neighbor searching. Match pairs are then retrieved by using an adaptive threshold selection strategy and utilized to create a view graph for divide-and-conquer based parallel SfM reconstruction. Finally, the performance of the proposed solution has been verified using three large-scale UAV datasets. The test results demonstrate that the proposed solution accelerates match pair retrieval with a speedup ratio ranging from 36 to 108 and improves the efficiency of SfM reconstruction with competitive accuracy in both relative and absolute orientation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. S. Jiang, W. Jiang, and L. Wang, “Unmanned aerial vehicle-based photogrammetric 3d mapping: A survey of techniques, applications, and challenges,” IEEE Geoscience and Remote Sensing Magazine, vol. 10, no. 2, pp. 135–171, 2021.
  2. Q. Li, H. Huang, W. Yu, and S. Jiang, “Optimized views photogrammetry: Precision analysis and a large-scale case study in qingdao,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 1144–1159, 2023.
  3. S. Jiang and W. Jiang, “Uav-based oblique photogrammetry for 3d reconstruction of transmission line: Practices and applications.” International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2019.
  4. S. Jiang, W. Jiang, W. Huang, and L. Yang, “Uav-based oblique photogrammetry for outdoor data acquisition and offsite visual inspection of transmission line,” Remote Sensing, vol. 9, no. 3, p. 278, 2017.
  5. I. Colomina and P. Molina, “Unmanned aerial systems for photogrammetry and remote sensing: A review,” ISPRS Journal of photogrammetry and remote sensing, vol. 92, pp. 79–97, 2014.
  6. S. Jiang and W. Jiang, “Efficient match pair selection for oblique uav images based on adaptive vocabulary tree,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 161, pp. 61–75, 2020.
  7. J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4104–4113.
  8. K. G. Nikolakopoulos, K. Soura, I. K. Koukouvelas, and N. G. Argyropoulos, “Uav vs classical aerial photogrammetry for archaeological studies,” Journal of Archaeological Science: Reports, vol. 14, pp. 758–773, 2017.
  9. D. Wischounig-Strucl and B. Rinner, “Resource aware and incremental mosaics of wide areas from small-scale uavs,” Machine Vision and Applications, vol. 26, pp. 885–904, 2015.
  10. Y. Chen, S. Shen, Y. Chen, and G. Wang, “Graph-based parallel large scale structure from motion,” Pattern Recognition, vol. 107, p. 107537, 2020.
  11. H. Cui, T. Shi, J. Zhang, P. Xu, Y. Meng, and S. Shen, “View-graph construction framework for robust and efficient structure-from-motion,” Pattern Recognition, vol. 114, p. 107712, 2021.
  12. H. AliAkbarpour, K. Palaniappan, and G. Seetharaman, “Fast structure from motion for sequential and wide area motion imagery,” in Proceedings of the IEEE International Conference on Computer Vision Workshops, 2015, pp. 34–41.
  13. J. L. Schönberger, F. Fraundorfer, and J. M. Frahm, “Structure-from-motion for mav image sequence analysis with photogrammetric applications,” The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 40, no. 3, p. 305, 2014.
  14. S. Jiang and W. Jiang, “Efficient sfm for oblique uav images: From match pair selection to geometrical verification,” Remote Sensing, vol. 10, no. 8, p. 1246, 2018.
  15. Z. Xu, L. Wu, M. Gerke, R. Wang, and H. Yang, “Skeletal camera network embedded structure-from-motion for 3d scene reconstruction from uav images,” ISPRS journal of photogrammetry and remote sensing, vol. 121, pp. 113–127, 2016.
  16. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International journal of computer vision, vol. 60, pp. 91–110, 2004.
  17. Q. Hou, R. Xia, J. Zhang, Y. Feng, Z. Zhan, and X. Wang, “Learning visual overlapping image pairs for sfm via cnn fine-tuning with photogrammetric geometry information,” International Journal of Applied Earth Observation and Geoinformation, vol. 116, p. 103162, 2023.
  18. D. Nister and H. Stewenius, “Scalable recognition with a vocabulary tree,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2.   Ieee, 2006, pp. 2161–2168.
  19. S. Jiang, W. Jiang, and B. Guo, “Leveraging vocabulary tree for simultaneous match pair selection and guided feature matching of uav images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 187, pp. 273–293, 2022.
  20. D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast place recognition in image sequences,” IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188–1197, 2012.
  21. M.-L. Cheng, M. Matsuoka, W. Liu, and F. Yamazaki, “Near-real-time gradually expanding 3d land surface reconstruction in disaster areas by sequential drone imagery,” Automation in Construction, vol. 135, p. 104105, 2022.
  22. E. Rupnik, F. Nex, and F. Remondino, “Automatic orientation of large blocks of oblique images,” The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 40, no. Part 1, p. W1, 2013.
  23. S. Jiang and W. Jiang, “Efficient structure from motion for oblique uav images based on maximal spanning tree expansion,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 132, pp. 140–161, 2017.
  24. S. Verykokou and C. Ioannidis, “A photogrammetry-based structure from motion algorithm using robust iterative bundle adjustment techniques.” ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. 4, 2018.
  25. C. Wu, “Towards linear-time incremental structure from motion,” in 2013 International Conference on 3D Vision-3DV 2013.   IEEE, 2013, pp. 127–134.
  26. J. QI, J. ZHAO, Y. XIE, and X.-n. CHEN, “Large-s cale image retrieval method.”
  27. H. Duan, Y. Peng, G. Min, X. Xiang, W. Zhan, and H. Zou, “Distributed in-memory vocabulary tree for real-time retrieval of big data images,” Ad Hoc Networks, vol. 35, pp. 137–148, 2015.
  28. S. Yan, M. Zhang, S. Lai, Y. Liu, and Y. Peng, “Image retrieval for structure-from-motion via graph convolutional network,” Information Sciences, vol. 573, pp. 20–36, 2021.
  29. J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.
  30. K.-Y. Huang, Y.-M. Tsai, C.-C. Tsai, and L.-G. Chen, “Video stabilization for vehicular applications using surf-like descriptor and kd-tree,” in 2010 IEEE International Conference on Image Processing.   IEEE, 2010, pp. 3517–3520.
  31. L. Hu and S. Nooshabadi, “High-dimensional image descriptor matching using highly parallel kd-tree construction and approximate nearest neighbor search,” Journal of Parallel and Distributed Computing, vol. 132, pp. 127–140, 2019.
  32. C. Griwodz, S. Gasparini, L. Calvet, P. Gurdjos, F. Castan, B. Maujean, G. De Lillo, and Y. Lanthony, “Alicevision meshroom: An open-source 3d reconstruction pipeline,” in Proceedings of the 12th ACM Multimedia Systems Conference, 2021, pp. 241–247.
  33. P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse of dimensionality,” in Proceedings of the thirtieth annual ACM symposium on Theory of computing, 1998, pp. 604–613.
  34. X. Li, J. Yang, and J. Ma, “Recent developments of content-based image retrieval (cbir),” Neurocomputing, vol. 452, pp. 675–689, 2021.
  35. Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov, “Approximate nearest neighbor algorithm based on navigable small world graphs,” Information Systems, vol. 45, pp. 61–68, 2014.
  36. Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs,” IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 4, pp. 824–836, 2018.
  37. S. Liu, S. Jiang, Y. Liu, W. Xue, and B. Guo, “Efficient sfm for large-scale uav images based on graph-indexed bow and parallel-constructed ba optimization,” Remote Sensing, vol. 14, no. 21, p. 5619, 2022.
  38. J. Sivic and A. Zisserman, “Video google: Efficient visual search of videos,” Toward category-level object recognition, pp. 127–144, 2006.
  39. R. Arandjelovic and A. Zisserman, “All about vlad,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2013, pp. 1578–1585.
  40. H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid, “Aggregating local image descriptors into compact codes,” IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 9, pp. 1704–1716, 2011.
  41. K. Arai and A. Ridho, “Hierarchical k-means: an algorithm for centroids initialization for k-means.”
  42. M. A. Fischler and R. C. Bolles, “A paradigm for model fitting with applications to image analysis and automated cartography (reprinted in readings in computer vision, ed. ma fischler,” Comm. ACM, vol. 24, no. 6, pp. 381–395, 1981.
  43. S. Jiang, Q. Li, W. Jiang, and W. Chen, “Parallel structure from motion for uav images via weighted connected dominating set,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
  44. A. M. Andrew, “Another efficient algorithm for convex hulls in two dimensions,” Information Processing Letters, vol. 9, no. 5, pp. 216–219, 1979.
  45. J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–905, 2000.
  46. C. Wu, “Siftgpu: A gpu implementation of scale invariant feature transform sift,” 2013.
  47. S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information theory, vol. 28, no. 2, pp. 129–137, 1982.
  48. J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with gpus,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547, 2019.
  49. R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “Netvlad: Cnn architecture for weakly supervised place recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 5297–5307.
  50. H. Cui, X. Gao, S. Shen, and Z. Hu, “Hsfm: Hybrid structure-from-motion,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1212–1221.
  51. H. Shiwei, L. Jing, Y. Tao, L. Zhaoyang, Z. Fangbing, and W. Lisong, “Online real-time image retrieval based on large-scale vocabulary tree,” in 2016 IEEE 13th International Conference on Signal Processing (ICSP).   IEEE, 2016, pp. 953–956.
  52. H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors into a compact image representation,” in 2010 IEEE computer society conference on computer vision and pattern recognition.   IEEE, 2010, pp. 3304–3311.
  53. X. Zhou, K. Xie, K. Huang, Y. Liu, Y. Zhou, M. Gong, and H. Huang, “Offsite aerial path planning for efficient urban scene reconstruction,” ACM Transactions on Graphics (TOG), vol. 39, no. 6, pp. 1–16, 2020.
  54. J. Chu, L. Li, and X. Xiao, “Remote sensing image retrieval by multi-scale attention-based cnn and product quantization,” in 2021 40th Chinese Control Conference (CCC).   IEEE, 2021, pp. 8292–8297.
  55. H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor search,” IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 1, pp. 117–128, 2010.
  56. S. Jiang, W. Jiang, B. Guo, L. Li, and L. Wang, “Learned local features for structure from motion of uav images: A comparative evaluation,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 10 583–10 597, 2021.
  57. M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340, p. 2, 2009.
Citations (3)

Summary

We haven't generated a summary for this paper yet.