Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SAGC-A68: a space access graph dataset for the classification of spaces and space elements in apartment buildings (2307.04515v1)

Published 10 Jul 2023 in cs.LG and cs.AI

Abstract: The analysis of building models for usable area, building safety, and energy use requires accurate classification data of spaces and space elements. To reduce input model preparation effort and errors, automated classification of spaces and space elements is desirable. A barrier hindering the utilization of Graph Deep Learning (GDL) methods to space function and space element classification is a lack of suitable datasets. To bridge this gap, we introduce a dataset, SAGC-A68, which comprises access graphs automatically generated from 68 digital 3D models of space layouts of apartment buildings. This graph-based dataset is well-suited for developing GDL models for space function and space element classification. To demonstrate the potential of the dataset, we employ it to train and evaluate a graph attention network (GAT) that predicts 22 space function and 6 space element classes. The dataset and code used in the experiment are available online. https://doi.org/10.5281/zenodo.7805872, https://github.com/A2Amir/SAGC-A68.

Summary

We haven't generated a summary for this paper yet.