Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enabling Faster Locomotion of Planetary Rovers with a Mechanically-Hybrid Suspension (2307.04494v2)

Published 10 Jul 2023 in cs.RO

Abstract: The exploration of the lunar poles and the collection of samples from the martian surface are characterized by shorter time windows demanding increased autonomy and speeds. Autonomous mobile robots must intrinsically cope with a wider range of disturbances. Faster off-road navigation has been explored for terrestrial applications but the combined effects of increased speeds and reduced gravity fields are yet to be fully studied. In this paper, we design and demonstrate a novel fully passive suspension design for wheeled planetary robots, which couples for the first time a high-range passive rocker with elastic in-wheel coil-over shock absorbers. The design was initially conceived and verified in a reduced-gravity (1.625 m/s${2}$) simulated environment, where three different passive suspension configurations were evaluated against steep slopes and unexpected obstacles, and later prototyped and validated in a series of field tests. The proposed mechanically-hybrid suspension proves to mitigate more effectively the negative effects (high-frequency/high-amplitude vibrations and impact loads) of faster locomotion (~1\,m/s) over unstructured terrains under varied gravity fields.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. A. Colaprete, P. Schultz, J. Heldmann, D. Wooden, M. Shirley, K. Ennico, B. Hermalyn, W. Marshall, A. Ricco, R. C. Elphic, D. Goldstein, D. Summy, G. D. Bart, E. Asphaug, D. Korycansky, D. Landis, and L. Sollitt, “Detection of water in the LCROSS ejecta plume,” Science, vol. 330, no. 6003, pp. 463–468, 2010.
  2. N. J. Potts, A. L. Gullikson, N. M. Curran, J. K. Dhaliwal, M. K. Leader, R. N. Rege, K. K. Klaus, and D. A. Kring, “Robotic traverse and sample return strategies for a lunar farside mission to the Schrödinger basin,” Advances in Space Research, vol. 55, no. 4, pp. 1241–1254, 2015.
  3. D. B. Bickler, “Articulated Suspension Systems,” 1989, US Pattent Office, Washington, D.C., US4840394.
  4. H. J. Eisen, C. W. Buck, G. R. Gillis-smith, and J. W. Umland, “Mechanical design of the Mars Pathfinder Mission,” in 7th European Symposium, Noordwijk, The Netherlands, 1997.
  5. R. Gonzalez and K. Iagnemma, “Slippage estimation and compensation for planetary exploration rovers. State of the art and future challenges,” Journal of Field Robotics, vol. 35, no. 4, pp. 564–577, 2018.
  6. D. P. Miller and T. L. Lee, “High-speed traversal of rough terrain using a Rocker-Bogie mobility system,” in Space 2002 and Robotics 2002, Albuquerque, NM, 2002.
  7. S. Wang and Y. Li, “Dynamic Rocker-Bogie: Kinematical Analysis in a High-Speed Traversal Stability Enhancement,” International Journal of Aerospace Engineering, vol. 2016, pp. 1–8, sep 2016.
  8. K. Iagnemma, A. Rzepniewski, S. Dubowsky, and P. Schenker, “Control of robotic vehicles with actively articulated suspensions in rough terrain,” Autonomous Robots, vol. 14, no. 1, pp. 5–16, 2003.
  9. P. W. Bartlett, D. Wettergreen, and W. Whittaker, “Design of the Scarab Rover for Mobility & Drilling in the Lunar Cold Traps,” in International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Hollywood, USA, 2008, pp. 3–6.
  10. F. Cordes, C. Oekermann, A. Babu, D. Kuehn, T. Stark, and F. Kirchner, “An Active Suspension System for a Planetary Rover,” in International Symposium on Artificial Intellifence, Robotics and Automation in Space (i-SAIRAS), Montreal, Canada, 2014.
  11. M. Malenkov, “Self-propelled automatic chassis of Lunokhod-1: History of creation in episodes,” Frontiers of Mechanical Engineering, vol. 11, no. 1, pp. 60–86, 2016.
  12. NASA, “Apollo 17 Mission Report,” Lyndon B. Johnson Space Center, Houston, Texas, Tech. Rep., 1973.
  13. NASA, “Apollo 15 Lunar Roving Vehicle Systems Handbook,” NASA, Houston, Texas, Tech. Rep., 1971.
  14. D. Rodríguez-Martínez, M. Van Winnendael, and K. Yoshida, “High-speed mobility on planetary surfaces: A technical review,” Journal of Field Robotics, vol. 36, no. 8, pp. 1436–1455, December 2019.
  15. E. Rohmer, S. P. N. Singh, and M. Freese, “V-rep: A versatile and scalable robot simulation framework,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 1321–1326.
  16. R. Gonzalez, D. Apostolopoulos, and K. Iagnemma, “Improving rover mobility through traction control: simulating rovers on the Moon,” Autonomous Robots, vol. 43, no. 8, pp. 1977–1988, 2019.
  17. D. Rodríguez-Martínez, F. Buse, M. Van Winnendael, and K. Yoshida, “The effects of increasing velocity on the tractive performance of planetary rovers,” in ISTVS 15th European-African Regional Conference, Prague, Czech Republic, 2019.
  18. J. Biesiadecki, E. Baumgartner, R. Bonitz, B. Cooper, F. Hartman, P. Leger, M. Maimone, S. Maxwell, A. Trebi-Ollennu, E. Tunstel, and J. Wright, “Mars exploration rover surface operations: driving opportunity at Meridiani Planum,” IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 63–71, 2006.
  19. S. Orr, J. Casler, J. Rhoades, and P. de León, “Effects of walking, running, and skipping under simulated reduced gravity using the NASA Active Response Gravity Offload System (ARGOS),” Acta Astronautica, vol. 197, pp. 115–125, 2022.
Citations (3)

Summary

We haven't generated a summary for this paper yet.