Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Communications and Sensing Hybrid Beamforming Design via Deep Unfolding (2307.04376v1)

Published 10 Jul 2023 in cs.IT, eess.SP, and math.IT

Abstract: Joint communications and sensing (JCAS) is envisioned as a key feature in future wireless communications networks. In massive MIMO-JCAS systems, hybrid beamforming (HBF) is typically employed to achieve satisfactory beamforming gains with reasonable hardware cost and power consumption. Due to the coupling of the analog and digital precoders in HBF and the dual objective in JCAS, JCAS-HBF design problems are very challenging and usually require highly complex algorithms. In this paper, we propose a fast HBF design for JCAS based on deep unfolding to optimize a tradeoff between the communications rate and sensing accuracy. We first derive closed-form expressions for the gradients of the communications and sensing objectives with respect to the precoders and demonstrate that the magnitudes of the gradients pertaining to the analog precoder are typically smaller than those associated with the digital precoder. Based on this observation, we propose a modified projected gradient ascent (PGA) method with significantly improved convergence. We then develop a deep unfolded PGA scheme that efficiently optimizes the communications-sensing performance tradeoff with fast convergence thanks to the well-trained hyperparameters. In doing so, we preserve the interpretability and flexibility of the optimizer while leveraging data to improve performance. Finally, our simulations demonstrate the potential of the proposed deep unfolded method, which achieves up to 33.5% higher communications sum rate and 2.5 dB lower beampattern error compared with the conventional design based on successive convex approximation and Riemannian manifold optimization. Furthermore, it attains up to a 65% reduction in run time and computational complexity with respect to the PGA procedure without unfolding.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward 6G networks: Use cases and technologies,” IEEE Commun. Mag., vol. 58, no. 3, pp. 55–61, 2020.
  2. “6G - The next hyper connected experience for all,” Samsung 6G Vision, 2020.
  3. T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, “Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond,” IEEE Access, vol. 7, pp. 78 729–78 757, 2019.
  4. K. V. Mishra, M. B. Shankar, V. Koivunen, B. Ottersten, and S. A. Vorobyov, “Toward millimeter-wave joint radar communications: A signal processing perspective,” IEEE Signal Process. Mag., vol. 36, no. 5, pp. 100–114, 2019.
  5. A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and K. Haneda, “Hybrid beamforming for massive MIMO: A survey,” IEEE Commun. Mag., vol. 55, no. 9, pp. 134–141, 2017.
  6. J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and A. Petropulu, “An overview of signal processing techniques for joint communication and radar sensing,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1295–1315, 2021.
  7. C. Ouyang, Y. Liu, and H. Yang, “Performance of downlink and uplink integrated sensing and communications (ISAC) systems,” IEEE Wireless Commun. Lett., vol. 11, no. 9, pp. 1850–1854, 2022.
  8. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., 2022.
  9. J. A. Zhang, X. Huang, Y. J. Guo, J. Yuan, and R. W. Heath, “Multibeam for joint communication and radar sensing using steerable analog antenna arrays,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 671–685, 2018.
  10. D. Ma, N. Shlezinger, T. Huang, Y. Liu, and Y. C. Eldar, “Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies,” IEEE Signal Process. Mag., vol. 37, no. 4, pp. 85–97, 2020.
  11. T. Huang, N. Shlezinger, X. Xu, Y. Liu, and Y. C. Eldar, “MAJoRCom: A dual-function radar communication system using index modulation,” IEEE Trans. Signal Process., vol. 68, pp. 3423–3438, 2020.
  12. D. Ma, N. Shlezinger, T. Huang, Y. Shavit, M. Namer, Y. Liu, and Y. C. Eldar, “Spatial modulation for joint radar-communications systems: Design, analysis, and hardware prototype,” IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2283–2298, 2021.
  13. D. Ma, N. Shlezinger, T. Huang, Y. Liu, and Y. C. Eldar, “FRaC: FMCW-based joint radar-communications system via index modulation,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1348–1364, 2021.
  14. A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity,” IEEE Trans. Signal Process., vol. 64, no. 8, pp. 2168–2181, 2016.
  15. P. Kumari, J. Choi, N. González-Prelcic, and R. W. Heath, “IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3012–3027, 2018.
  16. S. P. Chepuri, N. Shlezinger, F. Liu, G. C. Alexandropoulos, S. Buzzi, and Y. C. Eldar, “Integrated sensing and communications with reconfigurable intelligent surfaces,” IEEE Signal Process. Mag., 2023, early access.
  17. F. Liu, C. Masouros, A. Li, H. Sun, and L. Hanzo, “MU-MIMO communications with MIMO radar: From co-existence to joint transmission,” IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2755–2770, 2018.
  18. B. Li, A. P. Petropulu, and W. Trappe, “Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system,” IEEE Trans. Signal Process., vol. 64, no. 17, pp. 4562–4575, 2016.
  19. X. Liu, T. Huang, Y. Liu, and Y. C. Eldar, “Transmit beamforming with fixed covariance for integrated MIMO radar and multiuser communications,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 2022, pp. 8732–8736.
  20. J. Pritzker, J. Ward, and Y. C. Eldar, “Transmit precoder design approaches for dual-function radar-communication systems,” arXiv preprint arXiv:2203.09571, 2022.
  21. X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint transmit beamforming for multiuser MIMO communications and MIMO radar,” IEEE Trans. Signal Process., vol. 68, pp. 3929–3944, 2020.
  22. J. Pritzker, J. Ward, and Y. C. Eldar, “Transmit precoding for dual-function radar-communication systems,” in Proc. Annual Asilomar Conf. Signals, Syst., Comp., 2021.
  23. F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward dual-functional radar-communication systems: Optimal waveform design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279, 2018.
  24. B. Tang and P. Stoica, “MIMO multifunction RF systems: Detection performance and waveform design,” IEEE Trans. Signal Process., vol. 70, pp. 4381–4394, 2022.
  25. W. Wu, B. Tang, and X. Wang, “Constant-modulus waveform design for dual-function radar-communication systems in the presence of clutter,” IEEE Trans. Aerosp. Electron. Syst., 2023.
  26. R. Liu, M. Li, Q. Liu, and A. L. Swindlehurst, “Dual-functional radar-communication waveform design: A symbol-level precoding approach,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1316–1331, 2021.
  27. ——, “Joint waveform and filter designs for STAP-SLP-based MIMO-DFRC systems,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1918–1931, 2022.
  28. K. Wu, J. A. Zhang, Z. Ni, X. Huang, Y. J. Guo, and S. Chen, “Joint communications and sensing employing optimized MIMO-OFDM signals,” arXiv preprint arXiv:2208.09791, 2022.
  29. J. Johnston, L. Venturino, E. Grossi, M. Lops, and X. Wang, “MIMO OFDM dual-function radar-communication under error rate and beampattern constraints,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1951–1964, 2022.
  30. M. Temiz, E. Alsusa, and M. W. Baidas, “A dual-function massive MIMO uplink OFDM communication and radar architecture,” IEEE Trans. on Cogn. Commun. Netw., vol. 8, no. 2, pp. 750–762, 2021.
  31. S. Buzzi, C. D’Andrea, and M. Lops, “Using massive MIMO arrays for joint communication and sensing,” in Proc. Annual Asilomar Conf. Signals, Syst., Comp., 2019, pp. 5–9.
  32. M. F. Keskin, H. Wymeersch, and V. Koivunen, “MIMO-OFDM joint radar-communications: Is ICI friend or foe?” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1393–1408, 2021.
  33. T. Zirtiloglu, N. Shlezinger, Y. C. Eldar, and R. T. Yazicigil, “Power-efficient hybrid MIMO reciever with task-specific beamforming using low-resolution ADCs,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 2022, pp. 5338–5342.
  34. N. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Commun., vol. 28, no. 2, pp. 106–113, 2021.
  35. H. Zhang, H. Zhang, B. Di, M. Di Renzo, Z. Han, H. V. Poor, and L. Song, “Holographic integrated sensing and communication,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2114–2130, 2022.
  36. T. Gong, N. Shlezinger, S. S. Ioushua, M. Namer, Z. Yang, and Y. C. Eldar, “RF chain reduction for MIMO systems: A hardware prototype,” IEEE Syst. J., vol. 14, no. 4, pp. 5296–5307, 2020.
  37. C. Qi, W. Ci, J. Zhang, and X. You, “Hybrid beamforming for millimeter wave MIMO integrated sensing and communications,” IEEE Commun. Lett., vol. 26, no. 5, pp. 1136–1140, 2022.
  38. X. Wang, Z. Fei, J. A. Zhang, and J. Xu, “Partially-connected hybrid beamforming design for integrated sensing and communication systems,” IEEE Trans. Commun., vol. 70, no. 10, pp. 6648–6660, 2022.
  39. S. D. Liyanaarachchi, C. B. Barneto, T. Riihonen, M. Heino, and M. Valkama, “Joint multi-user communication and MIMO radar through full-duplex hybrid beamforming,” in IEEE Int. Online Symposium Joint Commun. & Sensing (JC&S), 2021.
  40. C. B. Barneto, T. Riihonen, S. D. Liyanaarachchi, M. Heino, N. González-Prelcic, and M. Valkama, “Beamformer design and optimization for joint communication and full-duplex sensing at mm-Waves,” IEEE Trans. Commun., vol. 70, no. 12, pp. 8298–8312, Dec. 2022.
  41. Z. Cheng and B. Liao, “QoS-aware hybrid beamforming and DOA estimation in multi-carrier dual-function radar-communication systems,” IEEE J. Select. Areas in Commun., vol. 40, no. 6, pp. 1890–1905, Sept. 2022.
  42. Z. Cheng, Z. He, and B. Liao, “Hybrid beamforming for multi-carrier dual-function radar-communication system,” IEEE Trans. on Cogn. Commun. Netw., vol. 7, no. 3, pp. 1002–1015, 2021.
  43. B. Wang, Z. Cheng, L. Wu, and Z. He, “Hybrid beamforming design for OFDM dual-function radar-communication system with double-phase-shifter structure,” in Proc. European Signal Process. Conf., Belgrade, Serbia, Aug. 2022, pp. 1067–1071.
  44. M. A. Islam, G. C. Alexandropoulos, and B. Smida, “Integrated sensing and communication with millimeter wave full duplex hybrid beamforming,” in Proc. IEEE Int. Conf. Commun., 2022, pp. 4673–4678.
  45. Z. Cheng, Z. He, and B. Liao, “Hybrid beamforming design for OFDM dual-function radar-communication system,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1455–1467, 2021.
  46. A. M. Elbir, K. V. Mishra, and S. Chatzinotas, “Hybrid beamforming for Terahertz joint ultra-massive MIMO radar-communications,” in Proc. Int. Symp. on Wireless Commun. Systems, Berlin, Germany, Sept. 2021.
  47. A. Kaushik, C. Masouros, and F. Liu, “Hardware efficient joint radar-communications with hybrid precoding and RF chain optimization,” in Proc. IEEE Int. Conf. Commun., Montreal, QC, Canada, June 2021.
  48. A. Kaushik, E. Vlachos, C. Masouros, C. Tsinos, and J. Thompson, “Green joint radar-communications: RF selection with low resolution DACs and hybrid precoding,” in Proc. IEEE Int. Conf. Commun., Seoul, Republic of Korea, May 2022, pp. 3160–3165.
  49. F. Liu and C. Masouros, “Hybrid beamforming with sub-arrayed MIMO radar: Enabling joint sensing and communication at mmWave band,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Process., Brighton, UK, May 2019, pp. 7770–7774.
  50. N. Shlezinger, M. Ma, O. Lavi, N. T. Nguyen, Y. C. Eldar, and M. Juntti, “AI-empowered hybrid MIMO beamforming,” arXiv preprint arXiv:2303.01723, 2023.
  51. J. M. Mateos-Ramos, J. Song, Y. Wu, C. Häger, M. F. Keskin, V. Yajnanarayana, and H. Wymeersch, “End-to-end learning for integrated sensing and communication,” in Proc. IEEE Int. Conf. Commun., Seoul, Republic of Korea, May 2022, pp. 1942–1947.
  52. C. Muth and L. Schmalen, “Autoencoder-based joint communication and sensing of multiple targets,” in Proc. Int. ITG Workshop on Smart Antennas and Conf. on Systems, Commun., and Coding, Feb. 2023.
  53. L. Xu, R. Zheng, and S. Sun, “A deep reinforcement learning approach for integrated automotive radar sensing and communication,” in Proc. IEEE Sensor Array and Multichannel Sign. Proc. Workshop, 2022, pp. 316–320.
  54. A. M. Elbir, K. V. Mishra, and S. Chatzinotas, “Terahertz-band joint ultra-massive MIMO radar-communications: Model-based and model-free hybrid beamforming,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1468–1483, 2021.
  55. N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, “Model-based deep learning,” Proc. IEEE, 2023, early access.
  56. V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing,” IEEE Signal Process. Mag., vol. 38, no. 2, pp. 18–44, 2021.
  57. N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, “Model-based deep learning,” Proc. IEEE, vol. 111, no. 5, pp. 465–499, 2023.
  58. O. Lavi and N. Shlezinger, “Learn to rapidly and robustly optimize hybrid precoding,” arXiv preprint arXiv:2301.00369, 2023.
  59. N. T. Nguyen, M. Ma, O. Lavi, N. Shlezinger, Y. C. Eldar, A. L. Swindlehurst, and M. Juntti, “Deep unfolding hybrid beamforming designs for THz massive MIMO systems,” arXiv preprint arXiv:2302.12041, 2023.
  60. N. Shlezinger and T. Routtenberg, “Discriminative and generative learning for linear estimation of random signals [lecture notes],” IEEE Signal Process. Mag., 2023, early access.
  61. X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 485–500, 2016.
  62. F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, 2016.
  63. N. T. Nguyen and K. Lee, “Unequally sub-connected architecture for hybrid beamforming in massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1127–1140, 2019.
  64. O. Agiv and N. Shlezinger, “Learn to rapidly optimize hybrid precoding,” in Proc. IEEE Works. on Sign. Proc. Adv. in Wirel. Comms., 2022.
  65. L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding in massive multiuser MIMO systems,” IEEE Commun. Lett., vol. 3, no. 6, pp. 653–656, 2014.
  66. L.-N. Tran, M. F. Hanif, A. Tolli, and M. Juntti, “Fast converging algorithm for weighted sum rate maximization in multicell MISO downlink,” IEEE Signal Process. Lett., vol. 19, no. 12, pp. 872–875, 2012.
  67. C. Zhang, Y. Jing, Y. Huang, and L. Yang, “Performance analysis for massive MIMO downlink with low complexity approximate zero-forcing precoding,” vol. 66, no. 9, pp. 3848–3864, 2018.
  68. A. Hjorungnes and D. Gesbert, “Complex-valued matrix differentiation: Techniques and key results,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2740–2746, 2007.
  69. K. B. Petersen, M. S. Pedersen et al., “The matrix cookbook,” Technical University of Denmark, vol. 7, no. 15, p. 510, 2008.
Citations (8)

Summary

We haven't generated a summary for this paper yet.