Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Wind Farm Active Power Control Strategy to Boost Tracking Margins in High-demand Scenarios (2307.04366v1)

Published 10 Jul 2023 in physics.flu-dyn, cs.CE, cs.SY, and eess.SY

Abstract: This paper presents a new active power control algorithm designed to maximize the power reserve of the individual turbines in a farm, in order to improve the tracking accuracy of a power reference signal. The control architecture is based on an open-loop optimal set-point scheduler combined with a feedback corrector, which actively regulate power by both wake steering and induction control. The methodology is compared with a state-of-the-art PI-based controller by means of high-fidelity LES simulations. The new wind farm controller reduces the occurrence of local saturation events, thereby improving the overall tracking accuracy, and limits fatigue loading in conditions of relatively high-power demand.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. J. Aho, A. Buckspan, J. Laks, P. Fleming, Y. Jeong, F. Dunne, M. Churchfield, L. Pao, and K. Johnson, “A tutorial of wind turbine control for supporting grid frequency through active power control,” in 2012 American Control Conference (ACC), 2012, pp. 3120–3131.
  2. E. Ela, V. Gevorgian, P. Fleming, Y. C. Zhang, M. Singh, E. Muljadi, A. Scholbrook, J. Aho, A. Buckspan, L. Pao, V. Singhvi, A. Tuohy, P. Pourbeik, D. Brooks, and N. Bhatt, “Active power controls from wind power: Bridging the gaps,” National Renewable Energy Lab. (NREL), Tech. Rep. NREL/TP-5D00-60574, 1 2014. [Online]. Available: https://www.osti.gov/biblio/1117060
  3. G. van Kuik, J. Peinke, R. Nijssen, D. Lekou, J. Mann, J. Sørensen, C. Ferreira, J. van Wingerden, D. Schlipf, P. Gebraad, H. Polinder, A. Abrahamsen, G. van Bussel, J. Sørensen, P. Tavner, C. Bottasso, M. Muskulus, D. Matha, H. Lindeboom, S. Degraer, O. Kramer, S. Lehnhoff, M. Sonnenschein, P. Sørensen, R. Künneke, P. Morthorst, and K. Skytte, “Long-term research challenges in wind energy – a research agenda by the european academy of wind energy,” Wind Energy Science, vol. 1, no. 1, pp. 1–39, Feb. 2016.
  4. P. Fleming, J. Aho, P. Gebraad, L. Pao, and Y. Zhang, “Computational fluid dynamics simulation study of active power control in wind plants,” in 2016 American Control Conference (ACC), 2016, pp. 1413–1420.
  5. L. Vermeer, J. Sørensen, and A. Crespo, “Wind turbine wake aerodynamics,” Progress in Aerospace Sciences, vol. 39, no. 6, pp. 467–510, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0376042103000782
  6. S. Lee, M. J. Churchfield, P. J. Moriarty, J. Jonkman, and J. Michalakes, “A Numerical Study of Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings,” Journal of Solar Energy Engineering, vol. 135, no. 3, 02 2013, 031001. [Online]. Available: https://doi.org/10.1115/1.4023319
  7. J. Meyers, C. L. Bottasso, K. Dykes, P. Fleming, P. Gebraad, G. Giebel, T. Göçmen, and J.-W. van Wingerden, “Wind farm flow control: Prospects and challenges,” Wind Energy Science Discussions, 2022.
  8. E. M. Nanos, C. L. Bottasso, S. Tamaro, D. I. Manolas, and V. A. Riziotis, “Vertical wake deflection for floating wind turbines by differential ballast control,” Wind Energy Science, vol. 7, no. 4, pp. 1641–1660, 2022. [Online]. Available: https://wes.copernicus.org/articles/7/1641/2022/
  9. F. Campagnolo, V. Petrović, J. Schreiber, E. M. Nanos, A. Croce, and C. L. Bottasso, “Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization,” Journal of Physics: Conference Series, vol. 753, p. 032006, sep 2016. [Online]. Available: https://doi.org/10.1088/1742-6596/753/3/032006
  10. P. Fleming, J. King, K. Dykes, E. Simley, J. Roadman, A. Scholbrock, P. Murphy, J. K. Lundquist, P. Moriarty, K. Fleming, J. van Dam, C. Bay, R. Mudafort, H. Lopez, J. Skopek, M. Scott, B. Ryan, C. Guernsey, and D. Brake, “Initial results from a field campaign of wake steering applied at a commercial wind farm – part 1,” Wind Energy Science, vol. 4, no. 2, pp. 273–285, 2019. [Online]. Available: https://wes.copernicus.org/articles/4/273/2019/
  11. B. M. Doekemeijer, S. Kern, S. Maturu, S. Kanev, B. Salbert, J. Schreiber, F. Campagnolo, C. L. Bottasso, S. Schuler, F. Wilts, T. Neumann, G. Potenza, F. Calabretta, F. Fioretti, and J.-W. van Wingerden, “Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in italy,” Wind Energy Science, vol. 6, no. 1, pp. 159–176, 2021. [Online]. Available: https://wes.copernicus.org/articles/6/159/2021/
  12. C. R. Shapiro, P. Bauweraerts, J. Meyers, C. Meneveau, and D. F. Gayme, “Model-based receding horizon control of wind farms for secondary frequency regulation,” Wind Energy, vol. 20, no. 7, pp. 1261–1275, 2017. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2093
  13. S. Boersma, V. Rostampour, B. Doekemeijer, W. van Geest, and J.-W. van Wingerden, “A constrained model predictive wind farm controller providing active power control: an LES study,” Journal of Physics: Conference Series, vol. 1037, p. 032023, jun 2018. [Online]. Available: https://doi.org/10.1088/1742-6596/1037/3/032023
  14. M. Vali, V. Petrović, S. Boersma, J.-W. van Wingerden, L. Y. Pao, and M. Kühn, “Model predictive active power control of waked wind farms,” in 2018 Annual American Control Conference (ACC), 2018, pp. 707–714.
  15. J.-W. van Wingerden, L. Pao, J. Aho, and P. Fleming, “Active power control of waked wind farms,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 4484–4491, 2017, 20th IFAC World Congress. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S240589631730722X
  16. M. Vali, V. Petrović, G. Steinfeld, L. Y. Pao, and M. Kühn, “An active power control approach for wake-induced load alleviation in a fully developed wind farm boundary layer,” Wind Energy Science, vol. 4, no. 1, pp. 139–161, 2019. [Online]. Available: https://wes.copernicus.org/articles/4/139/2019/
  17. J. G. Silva, B. Doekemeijer, R. Ferrari, and J.-W. van Wingerden, “Active power control of waked wind farms: Compensation of turbine saturation and thrust force balance,” in 2021 European Control Conference (ECC), 2021, pp. 1223–1228.
  18. P. A. Fleming, P. M. Gebraad, S. Lee, J.-W. van Wingerden, K. Johnson, M. Churchfield, J. Michalakes, P. Spalart, and P. Moriarty, “Evaluating techniques for redirecting turbine wakes using sowfa,” Renewable Energy, vol. 70, pp. 211–218, 2014, special issue on aerodynamics of offshore wind energy systems and wakes. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960148114000950
  19. J. Wang, C. Wang, F. Campagnolo, and C. L. Bottasso, “Wake behavior and control: comparison of les simulations and wind tunnel measurements,” Wind Energy Science, vol. 4, no. 1, pp. 71–88, 2019. [Online]. Available: https://wes.copernicus.org/articles/4/71/2019/
  20. M. Bertelè, C. L. Bottasso, and J. Schreiber, “Wind inflow observation from load harmonics: initial steps towards a field validation,” Wind Energy Science, vol. 6, no. 3, pp. 759–775, 2021. [Online]. Available: https://wes.copernicus.org/articles/6/759/2021/
  21. P. M. O. Gebraad, F. W. Teeuwisse, J. W. van Wingerden, P. A. Fleming, S. D. Ruben, J. R. Marden, and L. Y. Pao, “Wind plant power optimization through yaw control using a parametric model for wake effects—a cfd simulation study,” Wind Energy, vol. 19, no. 1, pp. 95–114, 2016. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/we.1822
  22. R. Brayton, S. Director, G. Hachtel, and L. Vidigal, “A new algorithm for statistical circuit design based on quasi-newton methods and function splitting,” IEEE Transactions on Circuits and Systems, vol. 26, no. 9, pp. 784–794, 1979.
  23. C. Cossu, “Wake redirection at higher axial induction,” Wind Energy Science, vol. 6, no. 2, pp. 377–388, 2021. [Online]. Available: https://wes.copernicus.org/articles/6/377/2021/
  24. K. S. Heck, H. M. Johlas, and M. F. Howland, “Modeling the induction, thrust, and power of a yaw misaligned actuator disk,” 2022. [Online]. Available: https://arxiv.org/abs/2209.00111
  25. N. Troldborg, J. N. Sørensen, and R. Mikkelsen, “Actuator line simulation of wake of wind turbine operating in turbulent inflow,” Journal of Physics: Conference Series, vol. 75, p. 012063, jul 2007. [Online]. Available: https://doi.org/10.1088/1742-6596/75/1/012063
  26. L. A. Martínez-Tossas and C. Meneveau, “Filtered lifting line theory and application to the actuator line model,” Journal of Fluid Mechanics, vol. 863, p. 269–292, 2019.
  27. P. Bortolotti, H. C. Tarres, K. L. Dykes, K. Merz, L. Sethuraman, D. Verelst, and F. Zahle, “IEA Wind TCP Task 37: Systems engineering in wind energy - wp2.1 reference wind turbines,” National Renewable Energy Lab. (NREL), Tech. Rep., 6 2019. [Online]. Available: https://www.osti.gov/biblio/1529216
  28. G. Freebury and W. Musial, “Determining equivalent damage loading for full-scale wind turbine blade fatigue tests,” in American Society of Mechanical Engineers (ASME) Wind Energy Symposium, Reno, Nevada, USA, January 2000.
Citations (4)

Summary

We haven't generated a summary for this paper yet.