Quasicrystalline second-order topological semimetals (2307.04334v1)
Abstract: Three-dimensional higher-order topological semimetals in crystalline systems exhibit higher-order Fermi arcs on one-dimensional hinges, challenging the conventional bulk-boundary correspondence. However, the existence of higher-order Fermi arc states in aperiodic quasicrystalline systems remains uncertain. In this work, we present the emergence of three-dimensional quasicrystalline second-order topological semimetal phases by vertically stacking two-dimensional quasicrystalline second-order topological insulators. These quasicrystalline topological semimetal phases are protected by rotational symmetries forbidden in crystals, and are characterized by topological hinge Fermi arcs connecting fourfold degenerate Dirac-like points in the spectrum. Our findings reveal an intriguing class of higher-order topological phases in quasicrystalline systems, shedding light on their unique properties.
- W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, “Quantized electric multipole insulators”, Science 357, 61 (2017a).
- F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, and T. Neupert, “Higher-order topological insulators”, Sci. Adv. 4, eaat0346 (2018).
- J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W. Brouwer, “Reflection-symmetric second-order topological insulators and superconductors”, Phys. Rev. Lett. 119, 246401 (2017).
- W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, “Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators”, Phys. Rev. B 96, 245115 (2017b).
- Z. Song, Z. Fang, and C. Fang, “(d−2)𝑑2(d-2)( italic_d - 2 )-dimensional edge states of rotation symmetry protected topological states”, Phys. Rev. Lett. 119, 246402 (2017).
- C.-Z. Li, A.-Q. Wang, C. Li, W.-Z. Zheng, A. Brinkman, D.-P. Yu, and Z.-M. Liao, “Reducing electronic transport dimension to topological hinge states by increasing geometry size of Dirac semimetal Josephson junctions”, Phys. Rev. Lett. 124, 156601 (2020).
- S. Nie, J. Chen, C. Yue, C. Le, D. Yuan, Z. Wang, W. Zhang, and H. Weng, “Tunable Dirac semimetals with higher-order Fermi arcs in Kagome lattices Pd33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTPb22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTX22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT (X=S,Se)”, Science Bulletin 67, 1958 (2022).
- Y. Fang and J. Cano, “Classification of Dirac points with higher-order Fermi arcs”, Phys. Rev. B 104, 245101 (2021).
- B. J. Wieder, Z. Wang, J. Cano, X. Dai, L. M. Schoop, B. Bradlyn, and B. A. Bernevig, “Strong and fragile topological Dirac semimetals with higher-order Fermi arcs”, Nat. Commun. 11, 627 (2020).
- X.-T. Zeng, Z. Chen, C. Chen, B.-B. Liu, X.-L. Sheng, and S. A. Yang, “Topological hinge modes in Dirac semimetals”, Front. Phys. 18, 13308 (2023).
- A. L. Szabó and B. Roy, “Dirty higher-order dirac semimetal: Quantum criticality and bulk-boundary correspondence”, Phys. Rev. Res. 2, 043197 (2020).
- M. Lin and T. L. Hughes, “Topological quadrupolar semimetals”, Phys. Rev. B 98, 241103 (2018).
- R. Chen, T. Liu, C. M. Wang, H.-Z. Lu, and X. C. Xie, “Field-tunable one-sided higher-order topological hinge states in Dirac semimetals”, Phys. Rev. Lett. 127, 066801 (2021a).
- Z.-M. Wang, R. Wang, J.-H. Sun, T.-Y. Chen, and D.-H. Xu, “Floquet Weyl semimetal phases in light-irradiated higher-order topological Dirac semimetals”, arXiv: 2210.01012 (2022a).
- K. Wang, J.-X. Dai, L. B. Shao, S. A. Yang, and Y. X. Zhao, “Boundary criticality of 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-invariant topology and second-order nodal-line semimetals”, Phys. Rev. Lett. 125, 126403 (2020).
- D.-T. Tran, A. Dauphin, N. Goldman, and P. Gaspard, “Topological Hofstadter insulators in a two-dimensional quasicrystal”, Phys. Rev. B 91, 085125 (2015).
- C. W. Duncan, S. Manna, and A. E. B. Nielsen, “Topological models in rotationally symmetric quasicrystals”, Phys. Rev. B 101, 115413 (2020).
- Z. Li and Z. F. Wang, “Quantum anomalous hall effect in twisted bilayer graphene quasicrystal”, Chin. Phys. B 29, 107101 (2020).
- J. Jeon, M. J. Park, and S. Lee, “Length scale formation in the Landau levels of quasicrystals”, Phys. Rev. B 105, 045146 (2022).
- A.-L. He, L.-R. Ding, Y. Zhou, Y.-F. Wang, and C.-D. Gong, “Quasicrystalline Chern insulators”, Phys. Rev. B 100, 214109 (2019).
- S. Traverso, M. Sassetti, and N. T. Ziani, “Role of the edges in a quasicrystalline Haldane model”, Phys. Rev. B 106, 125428 (2022).
- H. Huang and F. Liu, “Quantum spin Hall effect and spin Bott index in a quasicrystal lattice”, Phys. Rev. Lett. 121, 126401 (2018).
- S. Spurrier and N. R. Cooper, “Kane-mele with a twist: Quasicrystalline higher-order topological insulators with fractional mass kinks”, Phys. Rev. Res. 2, 033071 (2020a).
- M. A. Bandres, M. C. Rechtsman, and M. Segev, “Topological photonic quasicrystals: Fractal topological spectrum and protected transport”, Phys. Rev. X 6, 011016 (2016).
- K. Pöyhönen, I. Sahlberg, A. Westström, and T. Ojanen, “Amorphous topological superconductivity in a shiba glass”, Nat. Commun. 9, 2103 (2018).
- I. Fulga, D. Pikulin, and T. Loring, “Aperiodic weak topological superconductors”, Phys. Rev. Lett. 116, 257002 (2016).
- S. Manna, S. K. Das, and B. Roy, “Noncrystalline topological superconductors”, arXiv:2207.02203 (2022).
- S. Longhi, “Topological phase transition in non-hermitian quasicrystals”, Phys. Rev. Lett. 122, 237601 (2019).
- R. Chen, C.-Z. Chen, J.-H. Gao, B. Zhou, and D.-H. Xu, “Higher-order topological insulators in quasicrystals”, Phys. Rev. Lett. 124, 036803 (2020).
- D. Varjas, A. Lau, K. Pöyhönen, A. R. Akhmerov, D. I. Pikulin, and I. C. Fulga, “Topological phases without crystalline counterparts”, Phys. Rev. Lett. 123, 196401 (2019).
- C.-B. Hua, R. Chen, B. Zhou, and D.-H. Xu, “Higher-order topological insulator in a dodecagonal quasicrystal”, Phys. Rev. B 102, 241102 (2020).
- S. Spurrier and N. R. Cooper, ‘‘Kane-mele with a twist: Quasicrystalline higher-order topological insulators with fractional mass kinks”, Phys. Rev. Res. 2, 033071 (2020b).
- H. Huang, J. Fan, D. Li, and F. Liu, “Generic orbital design of higher-order topological quasicrystalline insulators with odd five-fold rotation symmetry”, Nano Lett. 21, 7056 (2021).
- A. Shi, J. Jiang, Y. Peng, P. Peng, J. Chen, and J. Liu, “Multimer analysis method reveals higher-order topology in quasicrystals”, arXiv:2209.05751 (2022).
- L. Xiong, Y. Zhang, Y. Liu, Y. Zheng, and X. Jiang, “Higher-order topological states in photonic thue-morse quasicrystals: quadrupole insulator and a new origin of corner states”, arXiv:2207.12286 (2022).
- R. Ghadimi, T. Sugimoto, K. Tanaka, and T. Tohyama, “Topological superconductivity in quasicrystals”, Phys. Rev. B 104, 144511 (2021).
- B. Lv, R. Chen, R. Li, C. Guan, B. Zhou, G. Dong, et al., “Realization of quasicrystalline quadrupole topological insulators in electrical circuits”, Commun. Phys. 4, 108 (2021).
- R. Chen, D.-H. Xu, and B. Zhou, “Topological Anderson insulator phase in a quasicrystal lattice”, Phys. Rev. B 100, 115311 (2019).
- C.-B. Hua, Z.-R. Liu, T. Peng, R. Chen, D.-H. Xu, and B. Zhou, “Disorder-induced chiral and helical Majorana edge modes in a two-dimensional Ammann-Beenker quasicrystal”, Phys. Rev. B 104, 155304 (2021).
- T. Peng, C.-B. Hua, R. Chen, Z.-R. Liu, D.-H. Xu, and B. Zhou, “Higher-order topological Anderson insulators in quasicrystals”, Phys. Rev. B 104, 245302 (2021b).
- M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, “Observation of topological phase transitions in photonic quasicrystals”, Phys. Rev. Lett. 110, 076403 (2013).
- D. J. Apigo, W. Cheng, K. F. Dobiszewski, E. Prodan, and C. Prodan, “Observation of topological edge modes in a quasiperiodic acoustic waveguide”, Phys. Rev. Lett. 122, 095501 (2019).
- D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry”, Phys. Rev. Lett. 53, 1951 (1984).
- D. Levine and P. J. Steinhardt, “Quasicrystals: A new class of ordered structures”, Phys. Rev. Lett. 53, 2477 (1984).
- B. D. Biggs, S. J. Poon, and N. R. Munirathnam, “Stable al-cu-ru icosahedral crystals: A new class of electronic alloys”, Phys. Rev. Lett. 65, 2700 (1990).
- F. S. Pierce, S. J. Poon, and Q. Guo, “Electron localization in metallic quasicrystals”, Science 261, 737 (1993).
- D. N. Basov, F. S. Pierce, P. Volkov, S. J. Poon, and T. Timusk, “Optical conductivity of insulating al-based alloys: Comparison of quasiperiodic and periodic systems”, Phys. Rev. Lett. 73, 1865 (1994).
- F. S. Pierce, Q. Guo, and S. J. Poon, “Enhanced insulatorlike electron transport behavior of thermally tuned quasicrystalline states of al-pd-re alloys”, Phys. Rev. Lett. 73, 2220 (1994).
- J. D. Cain, A. Azizi, M. Conrad, S. M. Griffin, and A. Zettl, “Layer-dependent topological phase in a two-dimensional quasicrystal and approximant”, Proc. Natl. Acad. Sci. USA 117, 26135 (2020).
- A. G. e. Fonseca, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Quasicrystalline Weyl points and dense Fermi-Bragg arcs”, arXiv:2211.14299 (2022).
- A. A. Burkov and L. Balents, ‘‘Weyl semimetal in a topological insulator multilayer”, Phys. Rev. Lett. 107, 127205 (2011).
- M. Mogi, M. Kawamura, R. Yoshimi, A. Tsukazaki, Y. Kozuka, N. Shirakawa, K. S. Takahashi, M. Kawasaki, and Y. Tokura, “A magnetic heterostructure of topological insulators as a candidate for an axion insulator”, Nat. Mater. 16, 516 (2017a).
- M. Mogi, M. Kawamura, A. Tsukazaki, R. Yoshimi, K. S. Takahashi, M. Kawasaki, and Y. Tokura, “Tailoring tricolor structure of magnetic topological insulator for robust axion insulator”, Sci. Adv. 3, eaao1669 (2017b).
- Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, “Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTTe44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT”, Science 367, 895 (2020).
- A. Gao, Y.-F. Liu, C. Hu, J.-X. Qiu, C. Tzschaschel, B. Ghosh, et al., “Layer Hall effect in a 2D topological axion antiferromagnet”, Nature 595, 521 (2021).
- R. Chen, S. Li, H.-P. Sun, Q. Liu, Y. Zhao, H.-Z. Lu, and X. C. Xie, “Using nonlocal surface transport to identify the axion insulator”, Phys. Rev. B 103, L241409 (2021b).
- Y.-R. Ding, D.-H. Xu, C.-Z. Chen, and X. C. Xie, “Hinged quantum spin Hall effect in antiferromagnetic topological insulators”, Phys. Rev. B 101, 041404(R) (2020).
- N. Shumiya, M. S. Hossain, J.-X. Yin, Z. Wang, M. Litskevich, C. Yoon, et al., “Evidence of a room-temperature quantum spin hall edge state in a higher-order topological insulator”, Nat. Mat. 21, 1111 (2022).
- Y.-F. Zhao, R. Zhang, R. Mei, L.-J. Zhou, H. Yi, Y.-Q. Zhang, et al., “Tuning the Chern number in quantum anomalous Hall insulators”, Nature 588, 419 (2020).
- A. Agarwala, V. Juričić, and B. Roy, “Higher-order topological insulators in amorphous solids”, Phys. Rev. Res. 2, 012067 (2020).
- Y.-Q. Wang and J. E. Moore, “Boundary edge networks induced by bulk topology”, Phys. Rev. B 99, 155102 (2019).
- Y.-L. Tao and Y. Xu, “Higher-order topological hyperbolic lattices”, arXiv:2209.02262 (2022).
- B. Roy, “Antiunitary symmetry protected higher-order topological phases”, Phys. Rev. Res. 1, 032048 (2019).
- J. H. Pixley, D. A. Huse, and S. Das Sarma, “Rare-region-induced avoided quantum criticality in disordered three-dimensional Dirac and Weyl semimetals”, Phys. Rev. X 6, 021042 (2016).
- B. Roy, R.-J. Slager, and V. Juričić, “Global phase diagram of a dirty weyl liquid and emergent superuniversality”, Phys. Rev. X 8, 031076 (2018).
- G. van Miert and C. Ortix, “Dislocation charges reveal two-dimensional topological crystalline invariants”, Phys. Rev. B 97, 201111 (2018).
- M. Geier, I. C. Fulga, and A. Lau, “Bulk-boundary-defect correspondence at disclinations in rotation-symmetric topological insulators and superconductors”, SciPost Phys. 10, 092 (2021).
- Y. Qi, H. He, and M. Xiao, “Manipulation of acoustic vortex with topological dislocation states”, Appl. Phys. Lett. 120, 212202 (2022).
- C. W. Peterson, T. Li, W. Jiang, T. L. Hughes, and G. Bahl, “Trapped fractional charges at bulk defects in topological insulators”, Nature 589, 376 (2021).
- L. Ye, C. Qiu, M. Xiao, T. Li, J. Du, M. Ke, and Z. Liu, “Topological dislocation modes in three-dimensional acoustic topological insulators”, Nat. Commu. 13, 508 (2022).
- H. Xue, D. Jia, Y. Ge, Y.-j. Guan, Q. Wang, S.-q. Yuan, H.-x. Sun, Y. D. Chong, and B. Zhang, “Observation of dislocation-induced topological modes in a three-dimensional acoustic topological insulator”, Phys. Rev. Lett. 127, 214301 (2021).
- Y. Deng, W. A. Benalcazar, Z.-G. Chen, M. Oudich, G. Ma, and Y. Jing, “Observation of degenerate zero-energy topological states at disclinations in an acoustic lattice”, Phys. Rev. Lett. 128, 174301 (2022).
- B. Xia, Z. Jiang, L. Tong, S. Zheng, and X. Man, “Topological bound states in elastic phononic plates induced by disclinations”, Acta Mech. Sin. 38, 521459 (2022).
- Q. Wang, Y. Ge, H. xiang Sun, H. Xue, D. Jia, Y. jun Guan, S. qi Yuan, B. Zhang, and Y. D. Chong, “Vortex states in an acoustic weyl crystal with a topological lattice defect”, Nat. Commun. 12, 3654 (2021).
- M. Kleman and J. Friedel, “Disclinations, dislocations, and continuous defects: A reappraisal”, Rev. Mod. Phys. 80, 61 (2008).