Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Action-based Ball Recovery Model using 360$^\circ$ data (2307.04215v1)

Published 9 Jul 2023 in stat.AP and cs.LG

Abstract: Even though having more possession does not necessarily lead to winning, teams like Manchester City, Liverpool, and Leeds United notably have tried to recover the ball quickly after they lost it over the past few years. Nowadays, some of the top managers in the world apply high-pressing styles, and concepts such as the five-second rule, usually credited to Guardiola, have been spreading out [9][10], becoming a fundamental part of how lots of teams have played over the recent years. Expressions like "don't let them breathe" and "get the ball back as soon as possible" are often heard in the media [4][5][6], but what are the actions that most lead to a change in possession? What is the influence of a team's positioning on the ball recovery? Which are the players that more often collapse when under pressure? Can we evaluate the defensive dynamics of teams that do not necessarily press the player in possession as intensely as those mentioned above? We try to answer those and other questions in this paper by creating a Generalized Action based Ball Recovery model (GABR) using Statsbomb 360$\circ$ data.

Summary

We haven't generated a summary for this paper yet.