On IMU preintegration: A nonlinear observer viewpoint and its application (2307.04165v1)
Abstract: The inertial measurement unit (IMU) preintegration approach nowadays is widely used in various robotic applications. In this article, we revisit the preintegration theory and propose a novel interpretation to understand it from a nonlinear observer perspective, specifically the parameter estimation-based observer (PEBO). We demonstrate that the preintegration approach can be viewed as recursive implementation of PEBO in moving horizons, and that the two approaches are equivalent in the case of perfect measurements. We then discuss how these findings can be used to tackle practical challenges in estimation problems. As byproducts, our results lead to a novel hybrid sampled-data observer design and an approach to address statistical optimality for PEBO in presence of noise.
- B. D. Anderson. Stability properties of Kalman-Bucy filters. J. Franklin Inst., 291(2):137–144, 1971.
- M. Arcak and D. Nešić. A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation. Automatica, 40(11):1931–1938, 2004.
- K. J. Åström. Introduction to Stochastic Control Theory. Courier Corporation, 2012.
- T. D. Barfoot. State Estimation for Robotics. Cambridge University Press, 2017.
- A. Barrau and S. Bonnabel. Linear observed systems on groups. Syst. Control Lett., 129:36–42, 2019.
- Observer design for continuous-time dynamical systems. Annu. Rev. Control, 53:224–248, 2022.
- G. Besançon. Nonlinear Observers and Applications, volume 363. Springer, 2007.
- Associating uncertainty to extended poses for on Lie group IMU preintegration with rotating earth. IEEE Trans. Robot., 38(2):998–1015, 2021.
- F. Bullo. Contraction Theory for Dynamical Systems. Kindle Direct Publishing, 1.1 edition, 2023.
- M. H. Davis. Linear estimation and stochastic control. Technical report, 1977.
- A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom., 17(3):229–241, 2001.
- Closed-form preintegration methods for graph-based visual–inertial navigation. Int. J. Robot. Res., 38(5):563–586, 2019.
- On-manifold preintegration for real-time visual–inertial odometry. IEEE Trans. Robot., 33(1):1–21, 2016.
- Contact forces preintegration for estimation in legged robotics using factor graphs. In IEEE Int. Conf. Robot., pages 1372–1378. IEEE, 2021.
- H. K. Khalil. High-gain Observers in Nonlinear Feedback Control. SIAM, 2017.
- Gaussian process preintegration for inertial-aided state estimation. IEEE Robot. Autom. Lett., 5(2):2108–2114, 2020.
- W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683–696, 1998.
- T. Lupton and S. Sukkarieh. Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions. IEEE Trans. Robot., 28(1):61–76, 2011.
- I. R. Manchester. Contracting nonlinear observers: Convex optimization and learning from data. In Proc. Am. Control Conf., pages 1873–1880. IEEE, 2018.
- Generalized parameter estimation-based observers: Application to power systems and chemical–biological reactors. Automatica, 129, 2021. Art. no. 109635.
- A parameter estimation approach to state observation of nonlinear systems. Syst. Control Lett., 85:84–94, 2015.
- Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot., 34(4):1004–1020, 2018.
- W. J. Rugh. Linear System Theory. Prentice-Hall, Inc., Upper Saddle River, New Jersey, 2 edition, 1996.
- Time-varying sampled-data observer with asynchronous measurements. IEEE Trans. Autom. Control, 64(2):869–876, 2018.
- Visual SLAM: Why filter? Image Vis. Comput., 30(2):65–77, 2012.
- Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control. arXiv preprint arXiv:2108.08436, 2021.
- Globally convergent visual-feature range estimation with biased inertial measurements. Automatica, 146. Art. no. 110639, 2022.
- An almost globally convergent observer for visual SLAM without persistent excitation. In 60th Proc. IEEE Conf. Decis. Control, pages 5441–5446, 2021.
- On state observers for nonlinear systems: A new design and a unifying framework. IEEE Trans. Autom. Control, 64(3):1193–1200, 2018.
- Attitude estimation from vector measurements: Necessary and sufficient conditions and convergent observer design. IEEE Trans. Autom. Control, early access, 2023.
- Reduced-order nonlinear observers via contraction analysis and convex optimization. IEEE Trans. Autom. Control, 67(8):4045–4060, 2022.