Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Randomized Algorithm for Single-Source Shortest Path on Undirected Real-Weighted Graphs (2307.04139v2)

Published 9 Jul 2023 in cs.DS

Abstract: In undirected graphs with real non-negative weights, we give a new randomized algorithm for the single-source shortest path (SSSP) problem with running time $O(m\sqrt{\log n \cdot \log\log n})$ in the comparison-addition model. This is the first algorithm to break the $O(m+n\log n)$ time bound for real-weighted sparse graphs by Dijkstra's algorithm with Fibonacci heaps. Previous undirected non-negative SSSP algorithms give time bound of $O(m\alpha(m,n)+\min{n\log n, n\log\log r})$ in comparison-addition model, where $\alpha$ is the inverse-Ackermann function and $r$ is the ratio of the maximum-to-minimum edge weight [Pettie & Ramachandran 2005], and linear time for integer edge weights in RAM model [Thorup 1999]. Note that there is a proposed complexity lower bound of $\Omega(m+\min{n\log n, n\log\log r})$ for hierarchy-based algorithms for undirected real-weighted SSSP [Pettie & Ramachandran 2005], but our algorithm does not obey the properties required for that lower bound. As a non-hierarchy-based approach, our algorithm shows great advantage with much simpler structure, and is much easier to implement.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Fast estimation of diameter and shortest paths (without matrix multiplication). In Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’96, page 547–553, USA, 1996. Society for Industrial and Applied Mathematics. ISBN 0898713668.
  2. Negative-weight single-source shortest paths in near-linear time. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 600–611, 2022. doi: 10.1109/FOCS54457.2022.00063.
  3. Timothy M. Chan. All-pairs shortest paths with real weights in O⁢(n3/log⁡n)𝑂superscript𝑛3𝑛O(n^{3}/\log n)italic_O ( italic_n start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT / roman_log italic_n ) time. Algorithmica, 50(2):236–243, 2008. doi: 10.1007/s00453-007-9062-1. URL https://doi.org/10.1007/s00453-007-9062-1.
  4. Bernard Chazelle. A minimum spanning tree algorithm with inverse-ackermann type complexity. J. ACM, 47(6):1028–1047, nov 2000. ISSN 0004-5411. doi: 10.1145/355541.355562. URL https://doi.org/10.1145/355541.355562.
  5. Bottleneck paths and trees and deterministic graphical games. In Nicolas Ollinger and Heribert Vollmer, editors, STACS, volume 47 of LIPIcs, pages 27:1–27:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. ISBN 978-3-95977-001-9. URL http://dblp.uni-trier.de/db/conf/stacs/stacs2016.html#ChechikKTZZ16.
  6. Maximum flow and minimum-cost flow in almost-linear time. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623, 2022. doi: 10.1109/FOCS54457.2022.00064.
  7. Andrew Chi chih Yao. An O⁢(|E|⁢log⁡log⁡|V|)𝑂𝐸𝑉O(|E|\log\log|V|)italic_O ( | italic_E | roman_log roman_log | italic_V | ) algorithm for finding minimum spanning trees. Information Processing Letters, 4(1):21–23, 1975. ISSN 0020-0190. doi: https://doi.org/10.1016/0020-0190(75)90056-3. URL https://www.sciencedirect.com/science/article/pii/0020019075900563.
  8. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959.
  9. Wlodzimierz Dobosiewicz. A more efficient algorithm for the min-plus multiplication. International Journal of Computer Mathematics, 32(1-2):49–60, 1990. doi: 10.1080/00207169008803814. URL https://doi.org/10.1080/00207169008803814.
  10. Relaxed heaps: An alternative to fibonacci heaps with applications to parallel computation. Commun. ACM, 31(11):1343–1354, nov 1988. ISSN 0001-0782. doi: 10.1145/50087.50096. URL https://doi.org/10.1145/50087.50096.
  11. Single-source bottleneck path algorithm faster than sorting for sparse graphs. CoRR, abs/1808.10658, 2018. URL http://arxiv.org/abs/1808.10658.
  12. Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5:345, 1962.
  13. Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, page 252–257, New York, NY, USA, 1983. Association for Computing Machinery. ISBN 0897910990. doi: 10.1145/800061.808754. URL https://doi.org/10.1145/800061.808754.
  14. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.
  15. Michael L. Fredman. New bounds on the complexity of the shortest path problem. SIAM Journal on Computing, 5(1):83–89, 1976. doi: 10.1137/0205006. URL https://doi.org/10.1137/0205006.
  16. Surpassing the information theoretic bound with fusion trees. Journal of Computer and System Sciences, 47(3):424–436, 1993. ISSN 0022-0000. doi: https://doi.org/10.1016/0022-0000(93)90040-4. URL https://www.sciencedirect.com/science/article/pii/0022000093900404.
  17. Trans-dichotomous algorithms for minimum spanning trees and shortest paths. Journal of Computer and System Sciences, 48(3):533–551, 1994. ISSN 0022-0000. doi: https://doi.org/10.1016/S0022-0000(05)80064-9. URL https://www.sciencedirect.com/science/article/pii/S0022000005800649.
  18. Algorithms for two bottleneck optimization problems. Journal of Algorithms, 9(3):411–417, 1988. ISSN 0196-6774. doi: https://doi.org/10.1016/0196-6774(88)90031-4. URL https://www.sciencedirect.com/science/article/pii/0196677488900314.
  19. Torben Hagerup. Improved shortest paths on the word ram. In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors, Automata, Languages and Programming, pages 61–72, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. ISBN 978-3-540-45022-1.
  20. An O⁢(n3⁢log⁡log⁡n/log2⁡n)𝑂superscript𝑛3𝑛superscript2𝑛O(n^{3}\log\log n/\log^{2}n)italic_O ( italic_n start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT roman_log roman_log italic_n / roman_log start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_n ) time algorithm for all pairs shortest paths. In Proceedings of the 13th Scandinavian Conference on Algorithm Theory, SWAT’12, page 131–141, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 9783642311543. doi: 10.1007/978-3-642-31155-0˙12. URL https://doi.org/10.1007/978-3-642-31155-0_12.
  21. Svante Janson. Large deviations for sums of partly dependent random variables. Random Struct. Algorithms, 24(3):234–248, may 2004. ISSN 1042-9832.
  22. A randomized linear-time algorithm to find minimum spanning trees. J. ACM, 42(2):321–328, mar 1995. ISSN 0004-5411. doi: 10.1145/201019.201022. URL https://doi.org/10.1145/201019.201022.
  23. Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical Computer Science, 312(1):47–74, 2004. ISSN 0304-3975. doi: https://doi.org/10.1016/S0304-3975(03)00402-X. URL https://www.sciencedirect.com/science/article/pii/S030439750300402X. Automata, Languages and Programming.
  24. An optimal minimum spanning tree algorithm. J. ACM, 49(1):16–34, jan 2002. ISSN 0004-5411. doi: 10.1145/505241.505243. URL https://doi.org/10.1145/505241.505243.
  25. A shortest path algorithm for real-weighted undirected graphs. SIAM Journal on Computing, 34(6):1398–1431, 2005. doi: 10.1137/S0097539702419650. URL https://doi.org/10.1137/S0097539702419650.
  26. Rajeev Raman. Priority queues: Small, monotone and trans-dichotomous. In Proceedings of the Fourth Annual European Symposium on Algorithms, ESA ’96, page 121–137, Berlin, Heidelberg, 1996. Springer-Verlag. ISBN 3540616802.
  27. Rajeev Raman. Recent results on the single-source shortest paths problem. SIGACT News, 28(2):81–87, jun 1997. ISSN 0163-5700. doi: 10.1145/261342.261352. URL https://doi.org/10.1145/261342.261352.
  28. Mikkel Thorup. Undirected single-source shortest paths with positive integer weights in linear time. J. ACM, 46(3):362–394, may 1999. ISSN 0004-5411. doi: 10.1145/316542.316548. URL https://doi.org/10.1145/316542.316548.
  29. Mikkel Thorup. On ram priority queues. SIAM Journal on Computing, 30(1):86–109, 2000a. doi: 10.1137/S0097539795288246. URL https://doi.org/10.1137/S0097539795288246.
  30. Mikkel Thorup. Floats, integers, and single source shortest paths. J. Algorithms, 35(2):189–201, may 2000b. ISSN 0196-6774. doi: 10.1006/jagm.2000.1080. URL https://doi.org/10.1006/jagm.2000.1080.
  31. Mikkel Thorup. Integer priority queues with decrease key in constant time and the single source shortest paths problem. Journal of Computer and System Sciences, 69(3):330–353, 2004. ISSN 0022-0000. doi: https://doi.org/10.1016/j.jcss.2004.04.003. URL https://www.sciencedirect.com/science/article/pii/S002200000400042X. Special Issue on STOC 2003.
  32. Stephen Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12, jan 1962. ISSN 0004-5411. doi: 10.1145/321105.321107. URL https://doi.org/10.1145/321105.321107.
  33. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, page 664–673, New York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450327107. doi: 10.1145/2591796.2591811. URL https://doi.org/10.1145/2591796.2591811.
  34. Virginia Vassilevska Williams. Nondecreasing paths in a weighted graph or: How to optimally read a train schedule. ACM Trans. Algorithms, 6(4), sep 2010. ISSN 1549-6325. doi: 10.1145/1824777.1824790. URL https://doi.org/10.1145/1824777.1824790.
  35. Uri Zwick. A slightly improved sub-cubic algorithm for the all pairs shortest paths problem with real edge lengths. In Algorithms and Computation: 15th International Symposium, ISAAC 2004, Hong Kong, China, December 20-22, 2004. Proceedings, page 921–932, Berlin, Heidelberg, 2004. Springer-Verlag. ISBN 978-3-540-24131-7. doi: 10.1007/978-3-540-30551-4˙78. URL https://doi.org/10.1007/978-3-540-30551-4_78.
Citations (4)

Summary

We haven't generated a summary for this paper yet.