Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PCG-based Static Underground Garage Scenario Generation (2307.03988v1)

Published 8 Jul 2023 in cs.AI and cs.RO

Abstract: Autonomous driving technology has five levels, from L0 to L5. Currently, only the L2 level (partial automation) can be achieved, and there is a long way to go before reaching the final level of L5 (full automation). The key to crossing these levels lies in training the autonomous driving model. However, relying solely on real-world road data to train the model is far from enough and consumes a great deal of resources. Although there are already examples of training autonomous driving models through simulators that simulate real-world scenarios, these scenarios require complete manual construction. Directly converting 3D scenes from road network formats will lack a large amount of detail and cannot be used as training sets. Underground parking garage static scenario simulation is regarded as a procedural content generation (PCG) problem. This paper will use the Sarsa algorithm to solve procedural content generation on underground garage structures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. S. Singh, “Critical reasons for crashes investigated in the national motor vehicle crash causation survey,” Tech. Rep., 2015.
  2. T. J. Crayton and B. M. Meier, “Autonomous vehicles: Developing a public health research agenda to frame the future of transportation policy,” Journal of Transport & Health, vol. 6, pp. 245–252, 2017.
  3. G. Lan, Z. Luo, and Q. Hao, “Development of a virtual reality teleconference system using distributed depth sensors,” in 2016 2nd IEEE International Conference on Computer and Communications (ICCC).   IEEE, 2016, pp. 975–978.
  4. G. Lan, J. Sun, C. Li, Z. Ou, Z. Luo, J. Liang, and Q. Hao, “Development of uav based virtual reality systems,” in 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI).   IEEE, 2016, pp. 481–486.
  5. M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural content generation for games: A survey,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 9, no. 1, feb 2013.
  6. R. Sutton, “Barto:“reinforcement learning: An introduction”,” IEEE Trans. Neural Netw, vol. 9, p. 1054, 1998.
  7. C. Boutilier, T. Dean, and S. Hanks, “Decision-theoretic planning: Structural assumptions and computational leverage,” Journal of Artificial Intelligence Research, vol. 11, pp. 1–94, 1999.
  8. G. Lan, Y. Bu, J. Liang, and Q. Hao, “Action synchronization between human and uav robotic arms for remote operation,” in 2016 IEEE International Conference on Mechatronics and Automation.   IEEE, 2016, pp. 2477–2481.
  9. R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine learning, vol. 3, pp. 9–44, 1988.
  10. H. van Seijen, H. van Hasselt, S. Whiteson, and M. Wiering, “A theoretical and empirical analysis of expected sarsa,” in 2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, 2009, pp. 177–184.
  11. G. Lan, J. Chen, and A. Eiben, “Evolutionary predator-prey robot systems: From simulation to real world,” in Proceedings of the genetic and evolutionary computation conference companion, 2019, pp. 123–124.
  12. K. Abdullah, N. H. Kamis, N. F. N. Azahar, S. F. Shariff, and Z. C. Musa, “Optimization of the parking spaces: A case study of dataran mawar, uitm shah alam,” in 2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER), 2012, pp. 684–687.
  13. P. Sawangchote and T. Yooyativong, “Automated parking area optimization for garage construction using geometric algorithm,” in 2017 International Conference on Digital Arts, Media and Technology (ICDAMT), 2017, pp. 286–290.
  14. H. Xu, H. Chen, Y. Cai, and X. Liu, “Underground parking lots layout design based on greedy algorithm,” vol. 25, no. 1, pp. 95–100, 2 2020.
  15. J. Togelius, T. Justinussen, and A. Hartzen, “Compositional procedural content generation,” in Proceedings of The Third Workshop on Procedural Content Generation in Games, ser. PCG’12.   New York, NY, USA: Association for Computing Machinery, 2012, p. 1–4.
  16. N. Peng, Y. Xi, J. Rao, X. Ma, and F. Ren, “Urban multiple route planning model using dynamic programming in reinforcement learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 8037–8047, 2022.
  17. A. Sandhu, Z. Chen, and J. McCoy, “Enhancing wave function collapse with design-level constraints,” in Proceedings of the 14th International Conference on the Foundations of Digital Games, ser. FDG ’19.   New York, NY, USA: Association for Computing Machinery, 2019.
  18. N. Akatsu, M. Shimizu, and T. Yonekura, “A study of the simulation technology application to a parking lot layout design,” in 2014 17th International Conference on Network-Based Information Systems, 2014, pp. 584–589.
  19. N. F. Ferns, “Metrics for markov decision processes,” 2003.
  20. G. Lan, J. M. Tomczak, D. M. Roijers, and A. Eiben, “Time efficiency in optimization with a bayesian-evolutionary algorithm,” Swarm and Evolutionary Computation, vol. 69, p. 100970, 2022.
  21. G. Lan, M. De Carlo, F. van Diggelen, J. M. Tomczak, D. M. Roijers, and A. E. Eiben, “Learning directed locomotion in modular robots with evolvable morphologies,” Applied Soft Computing, vol. 111, p. 107688, 2021.
  22. H. Xu, G. Lan, S. Wu, and Q. Hao, “Online intelligent calibration of cameras and lidars for autonomous driving systems,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC).   IEEE, 2019, pp. 3913–3920.
  23. G. Lan, J. Chen, and A. E. Eiben, “Simulated and real-world evolution of predator robots,” in 2019 IEEE Symposium Series on Computational Intelligence (SSCI).   IEEE, 2019, pp. 1974–1981.
  24. G. Lan, Y. Wu, F. Hu, and Q. Hao, “Vision-based human pose estimation via deep learning: A survey,” IEEE Transactions on Human-Machine Systems, 2022.
  25. Z. Sun, C. Meng, J. Cheng, Z. Zhang, and S. Chang, “A multi-scale feature pyramid network for detection and instance segmentation of marine ships in sar images,” Remote Sensing, vol. 14, no. 24, p. 6312, 2022.
  26. Z. Sun, C. Meng, T. Huang, Z. Zhang, and S. Chang, “Marine ship instance segmentation by deep neural networks using a global and local attention (gala) mechanism,” Plos one, vol. 18, no. 2, p. e0279248, 2023.
  27. G. Lan, Z. Gao, L. Tong, and T. Liu, “Class binarization to neuroevolution for multiclass classification,” Neural Computing and Applications, vol. 34, no. 22, pp. 19 845–19 862, 2022.
  28. Z. Gao and G. Lan, “A neat-based multiclass classification method with class binarization,” in Proceedings of the genetic and evolutionary computation conference companion, 2021, pp. 277–278.
  29. T. Liu, G. Lan, K. A. Feenstra, Z. Huang, and J. Heringa, “Towards a knowledge graph for pre-/probiotics and microbiota–gut–brain axis diseases,” Scientific Reports, vol. 12, no. 1, p. 18977, 2022.
  30. G. Lan, T. Liu, X. Wang, X. Pan, and Z. Huang, “A semantic web technology index,” Scientific reports, vol. 12, no. 1, p. 3672, 2022.
  31. G. Lan, L. De Vries, and S. Wang, “Evolving efficient deep neural networks for real-time object recognition,” in 2019 IEEE Symposium Series on Computational Intelligence (SSCI).   IEEE, 2019, pp. 2571–2578.
  32. G. Lan, J. Benito-Picazo, D. M. Roijers, E. Domínguez, and A. Eiben, “Real-time robot vision on low-performance computing hardware,” in 2018 15th international conference on control, automation, robotics and vision (ICARCV).   IEEE, 2018, pp. 1959–1965.

Summary

We haven't generated a summary for this paper yet.