Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coupled Quintessence scalar field model in light of observational datasets (2307.03740v2)

Published 7 Jul 2023 in astro-ph.CO and gr-qc

Abstract: We do a detailed analysis of a well-theoretically motivated interacting dark energy scalar field model with a time-varying interaction term. Using current cosmological datasets from CMB, BAO, Type Ia Supernova, $H(z)$ measurements from cosmic chronometers, angular diameter measurements from Megamasers, growth measurements, and local SH0ES measurements, we found that dark energy component may act differently than a cosmological constant at early times. The observational data also does not disfavor a small interaction between dark energy and dark matter at late times. When using all these datasets in combination, our value of $H_0$ agrees well with SH0ES results but in 2.5$\sigma$ tension with Planck results. We also did AIC and BIC analysis, and we found that the cosmological data prefer coupled quintessence model over $\Lambda$CDM, although the chi-square per number of degrees of freedom test prefers the latter.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (112)
  1. S. Perlmutter et al., “Discovery of a supernova explosion at half the age of the Universe and its cosmological implications,” Nature, vol. 391, pp. 51–54, 1998.
  2. A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J., vol. 116, pp. 1009–1038, 1998.
  3. S. Perlmutter et al., “Measurements of ΩΩ\Omegaroman_Ω and ΛΛ\Lambdaroman_Λ from 42 high redshift supernovae,” Astrophys. J., vol. 517, pp. 565–586, 1999.
  4. P. J. E. Peebles and B. Ratra, “The Cosmological Constant and Dark Energy,” Rev. Mod. Phys., vol. 75, pp. 559–606, 2003.
  5. A. G. Riess, L.-G. Sirolger, J. Tonry, S. Casertano, H. C. Ferguson, B. Mobasher, P. Challis, A. V. Filippenko, S. Jha, W. Li, R. Chornock, R. P. Kirshner, B. Leibundgut, M. Dickinson, M. Livio, M. Giavalisco, C. C. Steidel, T. Benítez, and Z. Tsvetanov, “Type ia supernova discoveries at z > 1 from the hubble space telescope: Evidence for past deceleration and constraints on dark energy evolution,” Astrophysical Journal Letters, vol. 607, no. 2 I, p. 665 – 687, 2004. Cited by: 3258; All Open Access, Bronze Open Access, Green Open Access.
  6. P. Astier, J. Guy, N. Regnault, R. Pain, E. Aubourg, D. Balam, S. Basa, R. Carlberg, S. Fabbro, F. Dominique, I. Hook, D. Howell, H. Lafoux, J. Neill, N. Palanque-Delabrouille, K. Perrett, C. Pritchet, J. Rich, M. Sullivan, and N. Walton, “The supernova legacy survey: measurement of ωmsubscript𝜔𝑚\omega_{m}italic_ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT , ωΛsubscript𝜔Λ\omega_{\Lambda}italic_ω start_POSTSUBSCRIPT roman_Λ end_POSTSUBSCRIPT and w from the first year data set,” http://dx.doi.org/10.1051/0004-6361:20054185, vol. 447, 10 2005.
  7. D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. Scoccimarro, M. R. Blanton, R. C. Nichol, R. Scranton, H.-J. Seo, M. Tegmark, Z. Zheng, et al., “Detection of the baryon acoustic peak in the large-scale correlation function of sdss luminous red galaxies,” The Astrophysical Journal, vol. 633, no. 2, p. 560, 2005.
  8. C. J. MacTavish, P. A. R. Ade, J. J. Bock, J. R. Bond, J. Borrill, A. Boscaleri, P. Cabella, C. R. Contaldi, B. P. Crill, P. de Bernardis, G. D. Gasperis, A. de Oliveira-Costa, G. D. Troia, G. di Stefano, E. Hivon, A. H. Jaffe, W. C. Jones, T. S. Kisner, A. E. Lange, A. M. Lewis, S. Masi, P. D. Mauskopf, A. Melchiorri, T. E. Montroy, P. Natoli, C. B. Netterfield, E. Pascale, F. Piacentini, D. Pogosyan, G. Polenta, S. Prunet, S. Ricciardi, G. Romeo, J. E. Ruhl, P. Santini, M. Tegmark, M. Veneziani, and N. Vittorio, “Cosmological parameters from the 2003 flight of boomerang,” The Astrophysical Journal, vol. 647, p. 799, aug 2006.
  9. E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Limon, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, S. S. Meyer, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, “Five-year wilkinson microwave anisotropy probe* observations: Cosmological interpretation,” The Astrophysical Journal Supplement Series, vol. 180, p. 330, feb 2009.
  10. M. Tegmark, M. A. Strauss, M. R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, D. H. Weinberg, I. Zehavi, N. A. Bahcall, et al., “Cosmological parameters from sdss and wmap,” Physical review D, vol. 69, no. 10, p. 103501, 2004.
  11. G. Hinshaw, J. L. Weiland, R. S. Hill, N. Odegard, D. Larson, C. L. Bennett, J. Dunkley, B. Gold, M. R. Greason, N. Jarosik, E. Komatsu, M. R. Nolta, L. Page, D. N. Spergel, E. Wollack, M. Halpern, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. L. Wright, “Five-year wilkinson microwave anisotropy probe* observations: Data processing, sky maps, and basic results,” The Astrophysical Journal Supplement Series, vol. 180, p. 225, feb 2009.
  12. G. Risaliti and E. Lusso, “Cosmological constraints from the Hubble diagram of quasars at high redshifts,” Nature Astron., vol. 3, no. 3, pp. 272–277, 2019.
  13. A. G. Riess, W. Yuan, L. M. Macri, D. Scolnic, D. Brout, S. Casertano, D. O. Jones, Y. Murakami, G. S. Anand, L. Breuval, T. G. Brink, A. V. Filippenko, S. Hoffmann, S. W. Jha, W. D. Kenworthy, J. Mackenty, B. E. Stahl, and W. Zheng, “A comprehensive measurement of the local value of the hubble constant with 1 km/s/mpc uncertainty from the hubble space telescope and the sh0es team,” The Astrophysical Journal Letters, vol. 934, p. L7, jul 2022.
  14. S. Capozziello, Ruchika, and A. A. Sen, “Model independent constraints on dark energy evolution from low-redshift observations,” Mon. Not. Roy. Astron. Soc., vol. 484, p. 4484, 2019.
  15. E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy,” Int. J. Mod. Phys. D, vol. 15, pp. 1753–1936, 2006.
  16. P. Bull et al., “Beyond ΛΛ\Lambdaroman_ΛCDM: Problems, solutions, and the road ahead,” Phys. Dark Univ., vol. 12, pp. 56–99, 2016.
  17. L. Perivolaropoulos and F. Skara, “Challenges for ΛΛ\Lambdaroman_ΛCDM: An update,” New Astron. Rev., vol. 95, p. 101659, 2022.
  18. N. Schöneberg, G. Franco Abellán, A. Pérez Sánchez, S. J. Witte, V. Poulin, and J. Lesgourgues, “The H0 Olympics: A fair ranking of proposed models,” Phys. Rept., vol. 984, pp. 1–55, 2022.
  19. I. Zlatev, L.-M. Wang, and P. J. Steinhardt, “Quintessence, cosmic coincidence, and the cosmological constant,” Phys. Rev. Lett., vol. 82, pp. 896–899, 1999.
  20. T. Chiba, T. Okabe, and M. Yamaguchi, “Kinetically driven quintessence,” Phys. Rev. D, vol. 62, p. 023511, 2000.
  21. R. de Putter and E. V. Linder, “Kinetic k-essence and Quintessence,” Astropart. Phys., vol. 28, pp. 263–272, 2007.
  22. P. F. Gonzalez-Diaz, “Cosmological models from quintessence,” Phys. Rev. D, vol. 62, p. 023513, 2000.
  23. T. Duary, A. D. N. Banerjee, and N. Banerjee, “Thawing and Freezing Quintessence Models: A thermodynamic Consideration,” Eur. Phys. J. C, vol. 79, no. 11, p. 888, 2019.
  24. R. R. Caldwell and E. V. Linder, “The Limits of quintessence,” Phys. Rev. Lett., vol. 95, p. 141301, 2005.
  25. S. M. Carroll, “Quintessence and the rest of the world: Suppressing long-range interactions,” Phys. Rev. Lett., vol. 81, pp. 3067–3070, Oct 1998.
  26. T. Barreiro, O. Bertolami, and P. Torres, “Gamma-Ray Bursts and Dark Energy - Dark Matter interaction,” Mon. Not. Roy. Astron. Soc., vol. 409, pp. 750–754, 2010.
  27. W. Yang, S. Pan, and A. Paliathanasis, “Cosmological constraints on an exponential interaction in the dark sector,” Monthly Notices of the Royal Astronomical Society, vol. 482, pp. 1007–1016, 10 2018.
  28. R. An, C. Feng, and B. Wang, “Relieving the tension between weak lensing and cosmic microwave background with interacting dark matter and dark energy models,” Journal of Cosmology and Astroparticle Physics, vol. 2018, p. 038, feb 2018.
  29. W. Yang, N. Banerjee, and S. Pan, “Constraining a dark matter and dark energy interaction scenario with a dynamical equation of state,” Phys. Rev. D, vol. 95, no. 12, p. 123527, 2017. [Addendum: Phys.Rev.D 96, 089903 (2017)].
  30. S. Fay, “Constraints from growth-rate data on some coupled dark energy models mimicking a ΛΛ\Lambdaroman_ΛCDM expansion,” Mon. Not. Roy. Astron. Soc., vol. 460, no. 2, pp. 1863–1868, 2016.
  31. W. Yang and L. Xu, “Testing coupled dark energy with large scale structure observation,” JCAP, vol. 08, p. 034, 2014.
  32. A. Piloyan, V. Marra, M. Baldi, and L. Amendola, “Linear perturbation constraints on multi-coupled dark energy,” Journal of Cosmology and Astroparticle Physics, vol. 2014, p. 045, feb 2014.
  33. Y.-H. Li and X. Zhang, “Large-scale stable interacting dark energy model: Cosmological perturbations and observational constraints,” Phys. Rev. D, vol. 89, no. 8, p. 083009, 2014.
  34. W. Yang, S. Pan, E. Di Valentino, R. C. Nunes, S. Vagnozzi, and D. F. Mota, “Tale of stable interacting dark energy, observational signatures, and the H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT tension,” JCAP, vol. 09, p. 019, 2018.
  35. E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi, “Interacting dark energy in the early 2020s: A promising solution to the H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and cosmic shear tensions,” Phys. Dark Univ., vol. 30, p. 100666, 2020.
  36. E. Di Valentino, A. Melchiorri, O. Mena, S. Pan, and W. Yang, “Interacting Dark Energy in a closed universe,” Mon. Not. Roy. Astron. Soc., vol. 502, no. 1, pp. L23–L28, 2021.
  37. A. Gómez-Valent, Z. Zheng, L. Amendola, C. Wetterich, and V. Pettorino, “Coupled and uncoupled early dark energy, massive neutrinos, and the cosmological tensions,” Phys. Rev. D, vol. 106, no. 10, p. 103522, 2022.
  38. B. M. Jackson, A. Taylor, and A. Berera, “On the large-scale instability in interacting dark energy and dark matter fluids,” Phys. Rev. D, vol. 79, p. 043526, Feb 2009.
  39. W. Zimdahl and D. Pavon, “Interacting quintessence,” Phys. Lett. B, vol. 521, pp. 133–138, 2001.
  40. M. S. Linton, A. Pourtsidou, R. Crittenden, and R. Maartens, “Variable sound speed in interacting dark energy models,” JCAP, vol. 04, p. 043, 2018.
  41. G. Olivares, F. Atrio-Barandela, and D. Pavon, “Matter density perturbations in interacting quintessence models,” Phys. Rev. D, vol. 74, p. 043521, 2006.
  42. B. Wang, E. Abdalla, F. Atrio-Barandela, and D. Pavón, “Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures,” Reports on Progress in Physics, vol. 79, p. 096901, aug 2016.
  43. J. Valiviita, E. Majerotto, and R. Maartens, “Instability in interacting dark energy and dark matter fluids,” JCAP, vol. 07, p. 020, 2008.
  44. D. G. A. Duniya, D. Bertacca, and R. Maartens, “Probing the imprint of interacting dark energy on very large scales,” Phys. Rev. D, vol. 91, p. 063530, Mar 2015.
  45. C. Carbone, M. Baldi, V. Pettorino, and C. Baccigalupi, “Maps of CMB lensing deflection from N-body simulations in Coupled Dark Energy Cosmologies,” JCAP, vol. 09, p. 004, 2013.
  46. L. Amendola and D. Tocchini-Valentini, “Perturbations growth and bias during acceleration,” in 37th Rencontres de Moriond on the Cosmological Model, pp. 407–410, 5 2002.
  47. E. R. M. Tarrant, C. van de Bruck, E. J. Copeland, and A. M. Green, “Coupled quintessence and the halo mass function,” Phys. Rev. D, vol. 85, p. 023503, Jan 2012.
  48. J.-H. He and B. Wang, “Effects of the interaction between dark energy and dark matter on cosmological parameters,” Journal of Cosmology and Astroparticle Physics, vol. 2008, p. 010, jun 2008.
  49. J. B. Binder and G. M. Kremer, “Model for a universe described by a non-minimally coupled scalar field and interacting dark matter,” Gen. Rel. Grav., vol. 38, pp. 857–870, 2006.
  50. T. Patil, S. Panda, M. Sharma, and Ruchika, “Dynamics of interacting scalar field model in the realm of chiral cosmology,” Eur. Phys. J. C, vol. 83, no. 2, p. 131, 2023.
  51. T. Patil and S. Panda, “Coupled scalar field cosmology with effects of curvature,” Eur. Phys. J. Plus, vol. 138, no. 7, p. 583, 2023.
  52. C. van de Bruck, J. Mifsud, J. P. Mimoso, and N. J. Nunes, “Generalized dark energy interactions with multiple fluids,” JCAP, vol. 11, p. 031, 2016.
  53. T. S. Koivisto and N. J. Nunes, “Inflation and dark energy from three-forms,” Phys. Rev. D, vol. 80, p. 103509, 2009.
  54. A. R. Gomes and L. Amendola, “The general form of the coupled Horndeski Lagrangian that allows cosmological scaling solutions,” JCAP, vol. 02, p. 035, 2016.
  55. T. S. Koivisto and N. J. Nunes, “Coupled three-form dark energy,” Phys. Rev. D, vol. 88, p. 123512, Dec 2013.
  56. T. S. Koivisto and N. J. Nunes, “Three-form cosmology,” Phys. Lett. B, vol. 685, pp. 105–109, 2010.
  57. B. J. Barros and N. J. Nunes, “Three-form inflation in type II Randall-Sundrum,” Phys. Rev. D, vol. 93, no. 4, p. 043512, 2016.
  58. N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys., vol. 641, p. A6, 2020. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  59. D. Dutcher et al., “Measurements of the E-mode polarization and temperature-E-mode correlation of the CMB from SPT-3G 2018 data,” Phys. Rev. D, vol. 104, no. 2, p. 022003, 2021.
  60. S. Aiola et al., “The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters,” JCAP, vol. 12, p. 047, 2020.
  61. L. Verde, T. Treu, and A. G. Riess, “Tensions between the Early and the Late Universe,” Nature Astron., vol. 3, p. 891, 7 2019.
  62. J. Evslin, A. A. Sen, and Ruchika, “Price of shifting the Hubble constant,” Phys. Rev. D, vol. 97, no. 10, p. 103511, 2018.
  63. S. Kumar and R. C. Nunes, “Echo of interactions in the dark sector,” Phys. Rev. D, vol. 96, no. 10, p. 103511, 2017.
  64. W. Yang, A. Mukherjee, E. Di Valentino, and S. Pan, “Interacting dark energy with time varying equation of state and the H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT tension,” Phys. Rev. D, vol. 98, no. 12, p. 123527, 2018.
  65. E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, “In the realm of the Hubble tension—a review of solutions,” Class. Quant. Grav., vol. 38, no. 15, p. 153001, 2021.
  66. F. Okamatsu, T. Sekiguchi, and T. Takahashi, “H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT tension without CMB data: Beyond the ΛΛ\Lambdaroman_ΛCDM,” Phys. Rev. D, vol. 104, no. 2, p. 023523, 2021.
  67. E. Di Valentino et al., “Cosmology Intertwined III: f⁢σ8𝑓subscript𝜎8f\sigma_{8}italic_f italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and S8subscript𝑆8S_{8}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT,” Astropart. Phys., vol. 131, p. 102604, 2021.
  68. V. Salvatelli, N. Said, M. Bruni, A. Melchiorri, and D. Wands, “Indications of a late-time interaction in the dark sector,” Phys. Rev. Lett., vol. 113, no. 18, p. 181301, 2014.
  69. J. Väliviita and E. Palmgren, “Distinguishing interacting dark energy from wCDM with CMB, lensing, and baryon acoustic oscillation data,” JCAP, vol. 07, p. 015, 2015.
  70. R. C. Nunes, S. Pan, and E. N. Saridakis, “New constraints on interacting dark energy from cosmic chronometers,” Phys. Rev. D, vol. 94, no. 2, p. 023508, 2016.
  71. E. Marachlian, I. E. Sánchez G., and O. P. Santillán, “Emergent Universe as an interaction in the dark sector,” Mod. Phys. Lett. A, vol. 32, no. 28, p. 1750152, 2017.
  72. A. Banerjee, H. Cai, L. Heisenberg, E. O. Colgáin, M. M. Sheikh-Jabbari, and T. Yang, “Hubble sinks in the low-redshift swampland,” Phys. Rev. D, vol. 103, no. 8, p. L081305, 2021.
  73. B.-H. Lee, W. Lee, E. O. Colgáin, M. M. Sheikh-Jabbari, and S. Thakur, “Is local H 00{}_{0}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT at odds with dark energy EFT?,” JCAP, vol. 04, no. 04, p. 004, 2022.
  74. G. Montani, M. De Angelis, F. Bombacigno, and N. Carlevaro, “Metric f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity with dynamical dark energy as a paradigm for the Hubble Tension,” 6 2023.
  75. M. Archidiacono, E. Castorina, D. Redigolo, and E. Salvioni, “Unveiling dark fifth forces with linear cosmology,” JCAP, vol. 10, p. 074, 2022.
  76. T. Koivisto, D. Wills, and I. Zavala, “Dark D-brane Cosmology,” JCAP, vol. 06, p. 036, 2014.
  77. D. Chowdhury, G. Tasinato, and I. Zavala, “Dark energy, D-branes, and Pulsar Timing Arrays,” 7 2023.
  78. L. Knox and M. Millea, “Hubble constant hunter’s guide,” Phys. Rev. D, vol. 101, no. 4, p. 043533, 2020.
  79. E. Di Valentino et al., “Snowmass2021 - Letter of interest cosmology intertwined II: The hubble constant tension,” Astropart. Phys., vol. 131, p. 102605, 2021.
  80. A. A. Sen, S. A. Adil, and S. Sen, “Do cosmological observations allow a negative ΛΛ\Lambdaroman_Λ?,” Mon. Not. Roy. Astron. Soc., vol. 518, no. 1, pp. 1098–1105, 2022.
  81. L. A. Escamilla, O. Akarsu, E. Di Valentino, and J. A. Vazquez, “Model-independent reconstruction of the Interacting Dark Energy Kernel: Binned and Gaussian process,” 2023.
  82. S. A. Adil, O. Akarsu, E. Di Valentino, R. C. Nunes, E. Ozulker, A. A. Sen, and E. Specogna, “Omnipotent dark energy: A phenomenological answer to the Hubble tension,” 2023.
  83. M. Rezaei and J. Sola Peracaula, “Running vacuum versus holographic dark energy: a cosmographic comparison,” Eur. Phys. J. C, vol. 82, no. 8, p. 765, 2022.
  84. M. Rezaei, J. Solà Peracaula, and M. Malekjani, “Cosmographic approach to Running Vacuum dark energy models: new constraints using BAOs and Hubble diagrams at higher redshifts,” Mon. Not. Roy. Astron. Soc., vol. 509, no. 2, pp. 2593–2608, 2021.
  85. M. Rezaei, M. Malekjani, and J. Sola, “Can dark energy be expressed as a power series of the Hubble parameter?,” Phys. Rev. D, vol. 100, no. 2, p. 023539, 2019.
  86. L. Amendola, “Coupled quintessence,” Phys. Rev. D, vol. 62, p. 043511, Jul 2000.
  87. L. Amendola and D. Tocchini-Valentini, “Baryon bias and structure formation in an accelerating universe,” Phys. Rev. D, vol. 66, p. 043528, 2002.
  88. T. Damour and C. Gundlach, “Nucleosynthesis constraints on an extended jordan-brans-dicke theory,” Phys. Rev. D, vol. 43, pp. 3873–3877, Jun 1991.
  89. L. Chen, Q.-G. Huang, and K. Wang, “Distance Priors from Planck Final Release,” JCAP, vol. 02, p. 028, 2019.
  90. P. A. R. Ade et al., “Planck 2015 results. XIV. Dark energy and modified gravity,” Astron. Astrophys., vol. 594, p. A14, 2016.
  91. D. Scolnic et al., “The Pantheon+ Analysis: The Full Data Set and Light-curve Release,” Astrophys. J., vol. 938, no. 2, p. 113, 2022.
  92. D. Brout et al., “The Pantheon+ Analysis: Cosmological Constraints,” Astrophys. J., vol. 938, no. 2, p. 110, 2022.
  93. A. G. Riess et al., “A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team,” Astrophys. J. Lett., vol. 934, no. 1, p. L7, 2022.
  94. M. Moresco, A. Cimatti, R. Jimenez, and et. al, “Improved constraints on the expansion rate of the universe up to z    1.1 from the spectroscopic evolution of cosmic chronometers,” Journal of Cosmology and Astroparticle Physics, vol. 2012, no. 08, p. 006–006, 2012.
  95. M. Moresco, “Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼similar-to\sim∼ 2,” Mon. Not. Roy. Astron. Soc., vol. 450, no. 1, pp. L16–L20, 2015.
  96. M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde, D. Thomas, A. Citro, R. Tojeiro, and D. Wilkinson, “A 6% measurement of the Hubble parameter at z∼0.45similar-to𝑧0.45z\sim 0.45italic_z ∼ 0.45: direct evidence of the epoch of cosmic re-acceleration,” JCAP, vol. 05, p. 014, 2016.
  97. F. Beutler et al., “The 6df galaxy survey: baryon acoustic oscillations and the local hubble constant,” Monthly Notices of the Royal Astronomical Society, vol. 416, pp. 3017–3032, jul 2011.
  98. A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, “The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z=0.15𝑧0.15z=0.15italic_z = 0.15,” Mon. Not. Roy. Astron. Soc., vol. 449, no. 1, pp. 835–847, 2015.
  99. M. Ata et al., “The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2,” Mon. Not. Roy. Astron. Soc., vol. 473, no. 4, pp. 4773–4794, 2018.
  100. H. du Mas des Bourboux et al., “Baryon acoustic oscillations from the complete SDSS-III Lyα𝛼\alphaitalic_α-quasar cross-correlation function at z=2.4𝑧2.4z=2.4italic_z = 2.4,” Astron. Astrophys., vol. 608, p. A130, 2017.
  101. S. Alam et al., “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,” Mon. Not. Roy. Astron. Soc., vol. 470, no. 3, pp. 2617–2652, 2017.
  102. M. J. Reid, J. A. Braatz, J. J. Condon, L. J. Greenhill, C. Henkel, and K. Y. Lo, “The megamaser cosmology project. i. very long baseline interferometric observations of ugc 3789,” The Astrophysical Journal, vol. 695, p. 287, mar 2009.
  103. J. A. Braatz, M. J. Reid, E. M. L. Humphreys, C. Henkel, J. J. Condon, and K. Lo, “The megamaser cosmology project. ii. the angular-diameter distance to ugc 3789,” The Astrophysical Journal, vol. 718, p. 657, jul 2010.
  104. M. J. Reid, J. A. Braatz, J. J. Condon, K. Y. Lo, C. Y. Kuo, C. M. V. Impellizzeri, and C. Henkel, “The megamaser cosmology project. iv. a direct measurement of the hubble constant from ugc 3789,” The Astrophysical Journal, vol. 767, p. 154, apr 2013.
  105. C. Y. Kuo, J. A. Braatz, M. J. Reid, K. Y. Lo, J. J. Condon, C. M. V. Impellizzeri, and C. Henkel, “The megamaser cosmology project. v. an angular-diameter distance to ngc 6264 at 140 mpc,” The Astrophysical Journal, vol. 767, p. 155, apr 2013.
  106. F. Gao, J. A. Braatz, M. J. Reid, K. Y. Lo, J. J. Condon, C. Henkel, C. Y. Kuo, C. M. V. Impellizzeri, D. W. Pesce, and W. Zhao, “The megamaser cosmology project. viii. a geometric distance to ngc 5765b,” The Astrophysical Journal, vol. 817, p. 128, jan 2016.
  107. S. Basilakos, S. Nesseris, and L. Perivolaropoulos, “Observational constraints on viable f(R) parametrizations with geometrical and dynamical probes,” Phys. Rev. D, vol. 87, no. 12, p. 123529, 2013.
  108. D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The mcmc hammer,” Publications of the Astronomical Society of the Pacific, vol. 125, p. 306, feb 2013.
  109. C. Heymans et al., “KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints,” Astron. Astrophys., vol. 646, p. A140, 2021.
  110. T. M. C. Abbott and et al., “Joint analysis of dark energy survey year 3 data and cmb lensing from spt and planck. iii. combined cosmological constraints,” Phys. Rev. D, vol. 107, p. 023531, Jan 2023.
  111. J. L. Bernal, L. Verde, and A. G. Riess, “The trouble with H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT,” JCAP, vol. 10, p. 019, 2016.
  112. V. de Sainte Agathe et al., “Baryon acoustic oscillations at z = 2.34 from the correlations of Lyα𝛼\alphaitalic_α absorption in eBOSS DR14,” Astron. Astrophys., vol. 629, p. A85, 2019.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com