Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nitsche method for Navier-Stokes equations with slip boundary conditions: Convergence analysis and VMS-LES stabilization (2307.03589v2)

Published 7 Jul 2023 in math.NA, cs.CE, and cs.NA

Abstract: In this paper, we analyze the Nitsche's method for the stationary Navier-Stokes equations on Lipschitz domains under minimal regularity assumptions. Our analysis provides a robust formulation for implementing slip (i.e. Navier) boundary conditions in arbitrarily complex boundaries. The well-posedness of the discrete problem is established using the Banach Ne\v{c}as Babu\v{s}ka and the Banach fixed point theorems under standard small data assumptions, and we also provide optimal convergence rates for the approximation error. Furthermore, we propose a VMS-LES stabilized formulation, which allows the simulation of incompressible fluids at high Reynolds numbers. We validate our theory through numerous numerical tests in well established benchmark problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.