Celestial open strings at one-loop (2307.03551v1)
Abstract: We study celestial amplitudes in string theory at one-loop. Celestial amplitudes describe scattering processes of boost eigenstates and relate to amplitudes in the more standard basis of momentum eigenstates through a Mellin transform. They are thus sensitive to both the ultraviolet and the infrared, which raises the question of how to appropriately take the field theory limit of string amplitudes in the celestial basis. We address this problem in the context of four-dimensional genus-one scattering processes of gluons in open string theory which reach the two-dimensional celestial sphere at null infinity. We show that the Mellin transform commutes with the adequate limit in the worldsheet moduli space and reproduces the celestial one-loop field theory amplitude expressed in the worldline formalism. The dependence on $\alpha'$ continues to be a simple overall factor in one-loop celestial amplitudes albeit with a power that is shifted by three units with respect to tree-level, thus making manifest that the dimensionless parameter $g_{10}2/\alpha'3$ organizes the loop expansion in the celestial basis.
- A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” arXiv:1703.05448 [hep-th].
- J. de Boer and S. N. Solodukhin, “A Holographic reduction of Minkowski space-time,” Nucl. Phys. B 665 (2003) 545–593, arXiv:hep-th/0303006.
- C. Cheung, A. de la Fuente, and R. Sundrum, “4D scattering amplitudes and asymptotic symmetries from 2D CFT,” JHEP 01 (2017) 112, arXiv:1609.00732 [hep-th].
- S. Pasterski, S.-H. Shao, and A. Strominger, “Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere,” Phys. Rev. D 96 (2017) no. 6, 065026, arXiv:1701.00049 [hep-th].
- S. Pasterski and S.-H. Shao, “Conformal basis for flat space amplitudes,” Phys. Rev. D 96 (2017) no. 6, 065022, arXiv:1705.01027 [hep-th].
- S. Pasterski, S.-H. Shao, and A. Strominger, “Gluon Amplitudes as 2d Conformal Correlators,” Phys. Rev. D 96 (2017) no. 8, 085006, arXiv:1706.03917 [hep-th].
- T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinberg’s soft graviton theorem,” JHEP 05 (2015) 151, arXiv:1401.7026 [hep-th].
- D. Kapec, P. Mitra, A.-M. Raclariu, and A. Strominger, “2D Stress Tensor for 4D Gravity,” Phys. Rev. Lett. 119 (2017) no. 12, 121601, arXiv:1609.00282 [hep-th].
- A. Nande, M. Pate, and A. Strominger, “Soft Factorization in QED from 2D Kac-Moody Symmetry,” JHEP 02 (2018) 079, arXiv:1705.00608 [hep-th].
- L. Donnay, A. Puhm, and A. Strominger, “Conformally Soft Photons and Gravitons,” JHEP 01 (2019) 184, arXiv:1810.05219 [hep-th].
- W. Fan, A. Fotopoulos, and T. R. Taylor, “Soft Limits of Yang-Mills Amplitudes and Conformal Correlators,” JHEP 05 (2019) 121, arXiv:1903.01676 [hep-th].
- D. Nandan, A. Schreiber, A. Volovich, and M. Zlotnikov, “Celestial Amplitudes: Conformal Partial Waves and Soft Limits,” JHEP 10 (2019) 018, arXiv:1904.10940 [hep-th].
- M. Pate, A.-M. Raclariu, and A. Strominger, “Conformally Soft Theorem in Gauge Theory,” Phys. Rev. D 100 (2019) no. 8, 085017, arXiv:1904.10831 [hep-th].
- T. Adamo, L. Mason, and A. Sharma, “Celestial amplitudes and conformal soft theorems,” Class. Quant. Grav. 36 (2019) no. 20, 205018, arXiv:1905.09224 [hep-th].
- A. Puhm, “Conformally Soft Theorem in Gravity,” JHEP 09 (2020) 130, arXiv:1905.09799 [hep-th].
- A. Guevara, “Notes on Conformal Soft Theorems and Recursion Relations in Gravity,” arXiv:1906.07810 [hep-th].
- D. Kapec and P. Mitra, “A d𝑑ditalic_d-Dimensional Stress Tensor for Minkd+2𝑑2{}_{d+2}start_FLOATSUBSCRIPT italic_d + 2 end_FLOATSUBSCRIPT Gravity,” JHEP 05 (2018) 186, arXiv:1711.04371 [hep-th].
- L. Donnay, S. Pasterski, and A. Puhm, “Asymptotic Symmetries and Celestial CFT,” arXiv:2005.08990 [hep-th].
- D. Kapec and P. Mitra, “Shadows and soft exchange in celestial CFT,” Phys. Rev. D 105 (2022) no. 2, 026009, arXiv:2109.00073 [hep-th].
- S. Pasterski, A. Puhm, and E. Trevisani, “Celestial diamonds: conformal multiplets in celestial CFT,” JHEP 11 (2021) 072, arXiv:2105.03516 [hep-th].
- L. Donnay, S. Pasterski, and A. Puhm, “Goldilocks modes and the three scattering bases,” JHEP 06 (2022) 124, arXiv:2202.11127 [hep-th].
- Y. Pano, A. Puhm, and E. Trevisani, “Symmetries in Celestial CFTd𝑑{}_{d}start_FLOATSUBSCRIPT italic_d end_FLOATSUBSCRIPT,” arXiv:2302.10222 [hep-th].
- M. Pate, A.-M. Raclariu, A. Strominger, and E. Y. Yuan, “Celestial operator products of gluons and gravitons,” Rev. Math. Phys. 33 (2021) no. 09, 2140003, arXiv:1910.07424 [hep-th].
- L. Ren, M. Spradlin, A. Yelleshpur Srikant, and A. Volovich, “On effective field theories with celestial duals,” JHEP 08 (2022) 251, arXiv:2206.08322 [hep-th].
- J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38 (1999) 1113–1133, arXiv:hep-th/9711200 [hep-th]. [Adv. Theor. Math. Phys.2,231(1998)].
- O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323 (2000) 183–386, arXiv:hep-th/9905111 [hep-th].
- K. Costello and N. M. Paquette, “Celestial holography meets twisted holography: 4d amplitudes from chiral correlators,” JHEP 10 (2022) 193, arXiv:2201.02595 [hep-th].
- K. Costello, N. M. Paquette, and A. Sharma, “Top-Down Holography in an Asymptotically Flat Spacetime,” Phys. Rev. Lett. 130 (2023) no. 6, 061602, arXiv:2208.14233 [hep-th].
- K. Costello, N. M. Paquette, and A. Sharma, “Burns space and holography,” arXiv:2306.00940 [hep-th].
- S. Stieberger and T. R. Taylor, “Strings on Celestial Sphere,” Nucl. Phys. B935 (2018) 388–411, arXiv:1806.05688 [hep-th].
- D. J. Gross and P. F. Mende, “String Theory Beyond the Planck Scale,” Nucl. Phys. B 303 (1988) 407–454.
- D. J. Gross and J. Manes, “The High-energy Behavior of Open String Scattering,” Nucl. Phys. B 326 (1989) 73–107.
- N. Arkani-Hamed, M. Pate, A.-M. Raclariu, and A. Strominger, “Celestial amplitudes from UV to IR,” JHEP 08 (2021) 062, arXiv:2012.04208 [hep-th].
- C.-M. Chang, Y.-t. Huang, Z.-X. Huang, and W. Li, “Bulk locality from the celestial amplitude,” SciPost Phys. 12 (2022) no. 5, 176, arXiv:2106.11948 [hep-th].
- H. Jiang, “Celestial OPEs and w1+∞1{}_{1+\infty}start_FLOATSUBSCRIPT 1 + ∞ end_FLOATSUBSCRIPT algebra from worldsheet in string theory,” JHEP 01 (2022) 101, arXiv:2110.04255 [hep-th].
- E. Casali and A. Sharma, “Celestial double copy from the worldsheet,” JHEP 05 (2021) 157, arXiv:2011.10052 [hep-th].
- T. Adamo, W. Bu, E. Casali, and A. Sharma, “Celestial operator products from the worldsheet,” JHEP 06 (2022) 052, arXiv:2111.02279 [hep-th].
- W. Bu, “Supersymmetric celestial OPEs and soft algebras from the ambitwistor string worldsheet,” Phys. Rev. D 105 (2022) no. 12, 126029, arXiv:2111.15584 [hep-th].
- Cambridge Monographs on Mathematical Physics. Cambridge University Press, 11, 2012.
- Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2012.
- H. A. González, A. Puhm, and F. Rojas, “Loop corrections to celestial amplitudes,” Phys. Rev. D 102 (2020) no. 12, 126027, arXiv:2009.07290 [hep-th].
- L. Eberhardt and S. Mizera, “Evaluating one-loop string amplitudes,” arXiv:2302.12733 [hep-th].
- M. B. Green and J. H. Schwarz, “Infinity Cancellations in SO(32) Superstring Theory,” Phys. Lett. 151B (1985) 21–25.
- C. Schubert, “Perturbative quantum field theory in the string inspired formalism,” Phys. Rept. 355 (2001) 73–234, arXiv:hep-th/0101036.