Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anableps: Adapting Bitrate for Real-Time Communication Using VBR-encoded Video (2307.03436v1)

Published 7 Jul 2023 in cs.MM

Abstract: Content providers increasingly replace traditional constant bitrate with variable bitrate (VBR) encoding in real-time video communication systems for better video quality. However, VBR encoding often leads to large and frequent bitrate fluctuation, inevitably deteriorating the efficiency of existing adaptive bitrate (ABR) methods. To tackle it, we propose the Anableps to consider the network dynamics and VBR-encoding-induced video bitrate fluctuations jointly for deploying the best ABR policy. With this aim, Anableps uses sender-side information from the past to predict the video bitrate range of upcoming frames. Such bitrate range is then combined with the receiver-side observations to set the proper bitrate target for video encoding using a reinforcement-learning-based ABR model. As revealed by extensive experiments on a real-world trace-driven testbed, our Anableps outperforms the GCC with significant improvement of quality of experience, e.g., 1.88x video quality, 57% less bitrate consumption, 85% less stalling, and 74% shorter interaction delay.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. TrustRadius, “Covid-19 software industry statistics,” https://www.trustradius.com/vendor-blog/covid-19-software-industry-data-and-statistics, 2020.
  2. T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A buffer-based approach to rate adaptation: Evidence from a large video streaming service,” in Proceedings of the 2014 ACM conference on SIGCOMM, 2014, pp. 187–198.
  3. A. Reed and B. Klimkowski, “Leaky streams: Identifying variable bitrate dash videos streamed over encrypted 802.11 n connections,” in 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC).   IEEE, 2016, pp. 1107–1112.
  4. T. Lakshman, A. Ortega, and A. R. Reibman, “Vbr video: Tradeoffs and potentials,” Proceedings of the IEEE, vol. 86, no. 5, pp. 952–973, 1998.
  5. Y. Liang, “Real-time vbr video traffic prediction for dynamic bandwidth allocation,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 34, no. 1, pp. 32–47, 2004.
  6. S.-J. Yoo, “Efficient traffic prediction scheme for real-time vbr mpeg video transmission over high-speed networks,” IEEE Transactions on Broadcasting, vol. 48, no. 1, pp. 10–18, 2002.
  7. S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Tcp friendly rate control (tfrc): Protocol specification,” Tech. Rep., 2008.
  8. L. S. Brakmo and L. L. Peterson, “Tcp vegas: End to end congestion avoidance on a global internet,” IEEE Journal on selected Areas in communications, vol. 13, no. 8, pp. 1465–1480, 1995.
  9. G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Congestion control for web real-time communication,” IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 2629–2642, 2017.
  10. H. Chen, X. Zhang, Y. Xu, J. Ren, J. Fan, Z. Ma, and W. Zhang, “T-gaming: A cost-efficient cloud gaming system at scale,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 12, pp. 2849–2865, 2019.
  11. T. Huang, R.-X. Zhang, C. Zhou, and L. Sun, “Qarc: Video quality aware rate control for real-time video streaming based on deep reinforcement learning,” in Proceedings of the 26th ACM international conference on Multimedia, 2018, pp. 1208–1216.
  12. A. Zhou, H. Zhang, G. Su, L. Wu, R. Ma, Z. Meng, X. Zhang, X. Xie, H. Ma, and X. Chen, “Learning to coordinate video codec with transport protocol for mobile video telephony,” in The 25th Annual International Conference on Mobile Computing and Networking, 2019, pp. 1–16.
  13. H. Zhang, A. Zhou, J. Lu, R. Ma, Y. Hu, C. Li, X. Zhang, H. Ma, and X. Chen, “Onrl: improving mobile video telephony via online reinforcement learning,” in Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, 2020, pp. 1–14.
  14. H. Zhang, A. Zhou, Y. Hu, C. Li, G. Wang, X. Zhang, H. Ma, L. Wu, A. Chen, and C. Wu, “Loki: improving long tail performance of learning-based real-time video adaptation by fusing rule-based models,” in Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, 2021, pp. 775–788.
  15. Y. Qin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and C. Yue, “Abr streaming of vbr-encoded videos: characterization, challenges, and solutions,” in Proceedings of the 14th International Conference on emerging Networking EXperiments and Technologies, 2018, pp. 366–378.
  16. I.-R. BT.1788, “Methodology for the subjective assessment of video quality in multimedia applications,” International Telecommunication Union, Geneva, CH, Standard, Jan. 2007.
  17. T. Huang, R.-X. Zhang, C. Zhou, and L. Sun, “Delay-constrained rate control for real-time video streaming with bounded neural network,” in Proceedings of the 28th ACM SIGMM Workshop on Network and Operating Systems Support for Digital Audio and Video, 2018, pp. 13–18.
  18. V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in International conference on machine learning.   PMLR, 2016, pp. 1928–1937.
  19. Y. Wang, S. Inguva, and B. Adsumilli, “Youtube ugc dataset for video compression research,” in 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP).   IEEE, 2019, pp. 1–5.
  20. V. Vonikakis, R. Subramanian, J. Arnfred, and S. Winkler, “A probabilistic approach to people-centric photo selection and sequencing,” IEEE Transactions on Multimedia, vol. 19, no. 11, pp. 2609–2624, 2017.
  21. Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett, B. Ribeiro, J. Zhan, and H. Zhang, “Oboe: Auto-tuning video abr algorithms to network conditions,” in Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, 2018, pp. 44–58.
  22. L. Mei, R. Hu, H. Cao, Y. Liu, Z. Han, F. Li, and J. Li, “Realtime mobile bandwidth prediction using lstm neural network and bayesian fusion,” Computer Networks, vol. 182, p. 107515, 2020.
  23. H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute path bandwidth traces from 3g networks: analysis and applications,” in Proceedings of the 4th ACM Multimedia Systems Conference, 2013, pp. 114–118.
  24. F. C. Commission et al., “Raw data-measuring broadband america,” Retrieved June, vol. 19, p. 2018, 2016.
  25. Apple, “Hls authoring specification for apple devices,” https://goo.gl/kYrCW5, 2017.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zicheng Zhang (124 papers)
  2. Hao Chen (1007 papers)
  3. Xun Cao (78 papers)
  4. Zhan Ma (91 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.