Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fourier-Net+: Leveraging Band-Limited Representation for Efficient 3D Medical Image Registration (2307.02997v1)

Published 6 Jul 2023 in eess.IV and cs.CV

Abstract: U-Net style networks are commonly utilized in unsupervised image registration to predict dense displacement fields, which for high-resolution volumetric image data is a resource-intensive and time-consuming task. To tackle this challenge, we first propose Fourier-Net, which replaces the costly U-Net style expansive path with a parameter-free model-driven decoder. Instead of directly predicting a full-resolution displacement field, our Fourier-Net learns a low-dimensional representation of the displacement field in the band-limited Fourier domain which our model-driven decoder converts to a full-resolution displacement field in the spatial domain. Expanding upon Fourier-Net, we then introduce Fourier-Net+, which additionally takes the band-limited spatial representation of the images as input and further reduces the number of convolutional layers in the U-Net style network's contracting path. Finally, to enhance the registration performance, we propose a cascaded version of Fourier-Net+. We evaluate our proposed methods on three datasets, on which our proposed Fourier-Net and its variants achieve comparable results with current state-of-the art methods, while exhibiting faster inference speeds, lower memory footprint, and fewer multiply-add operations. With such small computational cost, our Fourier-Net+ enables the efficient training of large-scale 3D registration on low-VRAM GPUs. Our code is publicly available at \url{https://github.com/xi-jia/Fourier-Net}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image registration: A survey,” IEEE Transactions on Medical Imaging, vol. 32, no. 7, pp. 1153–1190, 2013.
  2. J. A. Maintz and M. A. Viergever, “A survey of medical image registration,” Medical image analysis, vol. 2, no. 1, pp. 1–36, 1998.
  3. M. A. Viergever, J. A. Maintz, S. Klein, K. Murphy, M. Staring, and J. P. Pluim, “A survey of medical image registration–under review,” pp. 140–144, 2016.
  4. D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast mr images,” IEEE Transactions on Medical Imaging, vol. 18, no. 8, pp. 712–721, 1999.
  5. M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes, “Computing large deformation metric mappings via geodesic flows of diffeomorphisms,” International journal of computer vision, vol. 61, no. 2, pp. 139–157, 2005.
  6. J. Ashburner, “A fast diffeomorphic image registration algorithm,” Neuroimage, vol. 38, no. 1, pp. 95–113, 2007.
  7. T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Diffeomorphic demons: Efficient non-parametric image registration,” NeuroImage, vol. 45, no. 1, pp. S61–S72, 2009.
  8. S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. Pluim, “Elastix: a toolbox for intensity-based medical image registration,” IEEE transactions on medical imaging, vol. 29, no. 1, pp. 196–205, 2009.
  9. B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein, and J. C. Gee, “A reproducible evaluation of ants similarity metric performance in brain image registration,” Neuroimage, vol. 54, no. 3, pp. 2033–2044, 2011.
  10. M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes, D. J. Hawkes, N. C. Fox, and S. Ourselin, “Fast free-form deformation using graphics processing units,” Computer methods and programs in biomedicine, vol. 98, no. 3, pp. 278–284, 2010.
  11. M. Zhang and P. T. Fletcher, “Fast diffeomorphic image registration via fourier-approximated lie algebras,” International Journal of Computer Vision, vol. 127, no. 1, pp. 61–73, 2019.
  12. A. Thorley, X. Jia, H. J. Chang, B. Liu, K. Bunting, V. Stoll, A. de Marvao, D. P. O’Regan, G. Gkoutos, D. Kotecha et al., “Nesterov accelerated admm for fast diffeomorphic image registration,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2021, pp. 150–160.
  13. J. Duan, X. Jia, J. Bartlett, W. Lu, and Z. Qiu, “Arbitrary order total variation for deformable image registration,” Pattern Recognition, p. 109318, 2023.
  14. A. Hering, L. Hansen, T. C. Mok, A. C. Chung, H. Siebert, S. Häger, A. Lange, S. Kuckertz, S. Heldmann, W. Shao et al., “Learn2reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning,” IEEE Transactions on Medical Imaging, 2022.
  15. G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “Voxelmorph: A learning framework for deformable medical image registration,” IEEE Transactions on Medical Imaging, vol. 38, no. 8, pp. 1788–1800, Aug 2019.
  16. J. Zhang, “Inverse-consistent deep networks for unsupervised deformable image registration,” arXiv preprint arXiv:1809.03443, 2018.
  17. A. Hering, B. van Ginneken, and S. Heldmann, “mlvirnet: Multilevel variational image registration network,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part VI 22.   Springer, 2019, pp. 257–265.
  18. S. Zhao, T. Lau, J. Luo, I. Eric, C. Chang, and Y. Xu, “Unsupervised 3d end-to-end medical image registration with volume tweening network,” IEEE journal of biomedical and health informatics, vol. 24, no. 5, pp. 1394–1404, 2019.
  19. S. Zhao, Y. Dong, E. I.-C. Chang, and Y. Xu, “Recursive cascaded networks for unsupervised medical image registration,” in The IEEE International Conference on Computer Vision (ICCV), October 2019.
  20. T. C. Mok and A. C. Chung, “Fast symmetric diffeomorphic image registration with convolutional neural networks,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.
  21. B. Kim, D. H. Kim, S. H. Park, J. Kim, J.-G. Lee, and J. C. Ye, “Cyclemorph: cycle consistent unsupervised deformable image registration,” Medical Image Analysis, vol. 71, p. 102036, 2021.
  22. J. Chen, E. C. Frey, Y. He, W. P. Segars, Y. Li, and Y. Du, “Transmorph: Transformer for unsupervised medical image registration,” arXiv preprint arXiv:2111.10480, 2021.
  23. X. Jia, J. Bartlett, T. Zhang, W. Lu, Z. Qiu, and J. Duan, “U-net vs transformer: Is u-net outdated in medical image registration?” arXiv preprint arXiv:2208.04939, 2022.
  24. X. Jia, A. Thorley, W. Chen, H. Qiu, L. Shen, I. B. Styles, H. J. Chang, A. Leonardis, A. De Marvao, D. P. O’Regan et al., “Learning a model-driven variational network for deformable image registration,” IEEE Transactions on Medical Imaging, vol. 41, no. 1, pp. 199–212, 2021.
  25. M. Blendowski, L. Hansen, and M. P. Heinrich, “Weakly-supervised learning of multi-modal features for regularised iterative descent in 3d image registration,” Medical image analysis, vol. 67, p. 101822, 2021.
  26. H. Qiu, K. Hammernik, C. Qin, C. Chen, and D. Rueckert, “Embedding gradient-based optimization in image registration networks,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part VI.   Springer, 2022, pp. 56–65.
  27. A. V. Dalca, G. Balakrishnan, J. Guttag, and M. R. Sabuncu, “Unsupervised learning for fast probabilistic diffeomorphic registration,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2018, pp. 729–738.
  28. H. Qiu, C. Qin, A. Schuh, K. Hammernik, and D. Rueckert, “Learning diffeomorphic and modality-invariant registration using b-splines,” in Medical Imaging with Deep Learning, 2021.
  29. J. Wang and M. Zhang, “DeepFlash: An efficient network for learning-based medical image registration,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4444–4452.
  30. X. Jia, J. Bartlett, W. Chen, S. Song, T. Zhang, X. Cheng, W. Lu, Z. Qiu, and J. Duan, “Fourier-net: Fast image registration with band-limited deformation,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 1, 2023, pp. 1015–1023.
  31. V. Arsigny, O. Commowick, X. Pennec, and N. Ayache, “A log-euclidean framework for statistics on diffeomorphisms,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October 1-6, 2006. Proceedings, Part I 9.   Springer, 2006, pp. 924–931.
  32. A. Legouhy, O. Commowick, F. Rousseau, and C. Barillot, “Unbiased longitudinal brain atlas creation using robust linear registration and log-euclidean framework for diffeomorphisms,” in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).   IEEE, 2019, pp. 1038–1041.
  33. M. Hernandez, “Band-limited stokes large deformation diffeomorphic metric mapping,” IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 1, pp. 362–373, 2018.
  34. A. Mang and G. Biros, “An inexact newton–krylov algorithm for constrained diffeomorphic image registration,” SIAM journal on imaging sciences, vol. 8, no. 2, pp. 1030–1069, 2015.
  35. C. Qin, W. Bai, J. Schlemper, S. E. Petersen, S. K. Piechnik, S. Neubauer, and D. Rueckert, “Joint learning of motion estimation and segmentation for cardiac mr image sequences,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2018, pp. 472–480.
  36. X. Hu, M. Kang, W. Huang, M. R. Scott, R. Wiest, and M. Reyes, “Dual-stream pyramid registration network,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part II.   Springer, 2019, pp. 382–390.
  37. J. Chen, Y. He, E. C. Frey, Y. Li, and Y. Du, “Vit-v-net: Vision transformer for unsupervised volumetric medical image registration,” arXiv preprint arXiv:2104.06468, 2021.
  38. H. Qiu, C. Qin, L. Le Folgoc, B. Hou, J. Schlemper, and D. Rueckert, “Deep learning for cardiac motion estimation: supervised vs. unsupervised training,” in International Workshop on Statistical Atlases and Computational Models of the Heart.   Springer, 2019, pp. 186–194.
  39. I. Y. Ha, M. Wilms, and M. Heinrich, “Semantically guided large deformation estimation with deep networks,” Sensors, vol. 20, no. 5, p. 1392, 2020.
  40. J. Fan, X. Cao, P.-T. Yap, and D. Shen, “Birnet: Brain image registration using dual-supervised fully convolutional networks,” Medical image analysis, vol. 54, pp. 193–206, 2019.
  41. B. D. De Vos, F. F. Berendsen, M. A. Viergever, H. Sokooti, M. Staring, and I. Išgum, “A deep learning framework for unsupervised affine and deformable image registration,” Medical image analysis, vol. 52, pp. 128–143, 2019.
  42. D. Rueckert, P. Aljabar, R. A. Heckemann, J. V. Hajnal, and A. Hammers, “Diffeomorphic registration using b-splines,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October 1-6, 2006. Proceedings, Part II 9.   Springer, 2006, pp. 702–709.
  43. J. Duan, G. Bello, J. Schlemper, W. Bai, T. J. Dawes, C. Biffi, A. de Marvao, G. Doumoud, D. P. O’Regan, and D. Rueckert, “Automatic 3d bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach,” IEEE transactions on medical imaging, vol. 38, no. 9, pp. 2151–2164, 2019.
  44. X. Yang, R. Kwitt, M. Styner, and M. Niethammer, “Quicksilver: Fast predictive image registration–a deep learning approach,” NeuroImage, vol. 158, pp. 378–396, 2017.
  45. C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. Santos, S. Mehri, N. Rostamzadeh, Y. Bengio, and C. Pal, “Deep complex networks. arxiv preprint arxiv: 170509792,” 2017.
  46. M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer networks,” in Advances in Neural Information Processing Systems, 2015, pp. 2017–2025.
  47. W. Lu, J. Duan, Z. Qiu, Z. Pan, R. W. Liu, and L. Bai, “Implementation of high-order variational models made easy for image processing,” Mathematical Methods in the Applied Sciences, vol. 39, no. 14, pp. 4208–4233, 2016.
  48. J. Duan, Z. Qiu, W. Lu, G. Wang, Z. Pan, and L. Bai, “An edge-weighted second order variational model for image decomposition,” Digital Signal Processing, vol. 49, pp. 162–181, 2016.
  49. D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner, “Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults,” Journal of cognitive neuroscience, vol. 19, no. 9, pp. 1498–1507, 2007.
  50. A. Hoopes, M. Hoffmann, B. Fischl, J. Guttag, and A. V. Dalca, “Hypermorph: Amortized hyperparameter learning for image registration,” in International Conference on Information Processing in Medical Imaging.   Springer, 2021, pp. 3–17.
  51. M. P. Heinrich, O. Maier, and H. Handels, “Multi-modal multi-atlas segmentation using discrete optimisation and self-similarities.” VISCERAL Challenge@ ISBI, vol. 1390, p. 27, 2015.
  52. G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “An unsupervised learning model for deformable medical image registration,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 9252–9260.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub