Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer Learning for the Efficient Detection of COVID-19 from Smartphone Audio Data (2307.02975v1)

Published 6 Jul 2023 in cs.LG, cs.SD, and eess.AS

Abstract: Disease detection from smartphone data represents an open research challenge in mobile health (m-health) systems. COVID-19 and its respiratory symptoms are an important case study in this area and their early detection is a potential real instrument to counteract the pandemic situation. The efficacy of this solution mainly depends on the performances of AI algorithms applied to the collected data and their possible implementation directly on the users' mobile devices. Considering these issues, and the limited amount of available data, in this paper we present the experimental evaluation of 3 different deep learning models, compared also with hand-crafted features, and of two main approaches of transfer learning in the considered scenario: both feature extraction and fine-tuning. Specifically, we considered VGGish, YAMNET, and L\textsuperscript{3}-Net (including 12 different configurations) evaluated through user-independent experiments on 4 different datasets (13,447 samples in total). Results clearly show the advantages of L\textsuperscript{3}-Net in all the experimental settings as it overcomes the other solutions by 12.3\% in terms of Precision-Recall AUC as features extractor, and by 10\% when the model is fine-tuned. Moreover, we note that to fine-tune only the fully-connected layers of the pre-trained models generally leads to worse performances, with an average drop of 6.6\% with respect to feature extraction. %highlighting the need for further investigations. Finally, we evaluate the memory footprints of the different models for their possible applications on commercial mobile devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. doi:10.1145/3465398. URL https://doi.org/10.1145/3465398
  2. doi:10.1109/ACCESS.2020.3009328.
  3. arXiv:https://www.medrxiv.org/content/early/2020/04/06/2020.04.02.20051136.full.pdf, doi:10.1101/2020.04.02.20051136. URL https://www.medrxiv.org/content/early/2020/04/06/2020.04.02.20051136
  4. arXiv:2003.05037.
  5. doi:10.1145/3394486.3412865. URL http://dx.doi.org/10.1145/3394486.3412865
  6. doi:10.3389/fdgth.2021.564906. URL https://www.frontiersin.org/article/10.3389/fdgth.2021.564906
  7. doi:10.3389/fdgth.2020.00005. URL https://www.frontiersin.org/articles/10.3389/fdgth.2020.00005
  8. doi:https://doi.org/10.1016/j.imu.2020.100378. URL https://www.sciencedirect.com/science/article/pii/S2352914820303026
  9. doi:10.1109/ICASSP39728.2021.9414576.
  10. doi:10.21437/interspeech.2020-2768. URL http://dx.doi.org/10.21437/Interspeech.2020-2768
  11. arXiv:2004.06510.
  12. doi:10.1109/OJEMB.2020.3026928.
  13. doi:10.1109/SMARTCOMP55677.2022.00029.
  14. doi:10.1109/TASLP.2016.2592698.
  15. doi:10.48550/arXiv.2106.11342. URL https://d2l.ai
  16. doi:10.18653/v1/W19-4302.
  17. doi:10.1109/ACCESS.2020.3034343.
  18. doi:10.1109/CVPR.2019.00494.
  19. doi:10.1038/s41598-021-96724-7.
  20. doi:10.1109/BioCAS54905.2022.9948614.
  21. doi:10.1007/s13755-019-0091-3.
  22. doi:https://doi.org/10.1016/j.patcog.2021.108289. URL https://www.sciencedirect.com/science/article/pii/S0031320321004696
  23. doi:10.1038/s41598-021-95042-2. URL https://doi.org/10.1038/s41598-021-95042-2
  24. doi:10.1038/s41746-021-00553-x. URL https://doi.org/10.1038/s41746-021-00553-x
  25. doi:10.1109/ICASSP.2017.7952132.
  26. doi:10.1109/JPROC.2020.3004555.
  27. doi:10.3390/jsan10040072. URL https://www.mdpi.com/2224-2708/10/4/72
  28. doi:10.1109/ICASSP.2019.8682475.
  29. doi:10.1038/s41597-021-00937-4. URL https://doi.org/10.1038/s41597-021-00937-4
  30. doi:10.1007/s42979-020-0074-0. URL https://doi.org/10.1007/s42979-020-0074-0
  31. doi:10.1145/2907070. URL https://doi.org/10.1145/2907070
  32. doi:10.1145/3274783.3274840. URL https://doi.org/10.1145/3274783.3274840
  33. doi:10.1109/IECON.2019.8927153.
  34. doi:https://doi.org/10.1016/j.neucom.2021.07.045. URL https://www.sciencedirect.com/science/article/pii/S0925231221010894
  35. doi:https://doi.org/10.1016/j.media.2022.102470. URL https://www.sciencedirect.com/science/article/pii/S1361841522001177
Citations (14)

Summary

We haven't generated a summary for this paper yet.