Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonclassicality in correlations without causal order (2307.02565v3)

Published 5 Jul 2023 in quant-ph

Abstract: Bell scenarios are multipartite scenarios that exclude any signalling between parties. This leads to a strict hierarchy of classical, quantum, and non-signalling correlations in such scenarios. Here we consider a minimal relaxation of non-signalling: each party is allowed to receive a system once, implement any local intervention on it, and send out the resulting system once. Crucially, unlike Bell, we make no global assumption about causal relations between parties, e.g., they could be embedded in some exotic spacetime with indefinite causal order. We do make a causal assumption local to each party, i.e., the input received by it causally precedes the output it sends out. We then ask: Can we device-independently certify the nonclassicality of multipartite correlations in such scenarios, just as Bell inequality violations do so in Bell scenarios? A priori, this is not clear: without some assumptions on the underlying physics (e.g., non-signalling), parties can realize arbitrary correlations. We therefore make a minimal assumption of logical consistency on the underlying physics, i.e., it must be free of time-travel antinomies without imposing any restrictions on local interventions of the parties. We then define antinomicity as a device-independent notion of nonclassicality and prove a strict hierarchy between correlation sets based on their antinomicity. An antinomic correlation cannot be explained by a classical physical theory compatible with free local interventions on pain of logical contradictions in the theory. On the other hand, parties exchanging quantum systems can witness antinomicity while respecting logical consistency. Antinomicity reduces to Bell nonlocality for non-signalling parties. It also resolves a conceptual puzzle, namely, the failure of causal inequalities as witnesses of nonclassicality: antinomicity implies causal inequality violations, but not conversely.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. L. Hardy, Probability theories with dynamic causal structure: a new framework for quantum gravity, arXiv preprint gr-qc/0509120  (2005).
  2. L. Hardy, Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure, Journal of Physics A: Mathematical and Theoretical 40, 3081 (2007).
  3. O. Oreshkov, F. Costa, and Č. Brukner, Quantum correlations with no causal order, Nature communications 3, 1092 (2012).
  4. S. Shrapnel, F. Costa, and G. Milburn, Updating the born rule, New Journal of Physics 20, 053010 (2018).
  5. J. Wechs, C. Branciard, and O. Oreshkov, Existence of processes violating causal inequalities on time-delocalised subsystems, Nature Communications 14, 1471 (2023).
  6. Ä. Baumeler and E. Tselentis, Equivalence of Grandfather and Information Antinomy Under Intervention, Electronic Proceedings in Theoretical Computer Science 340, 1 (2021).
  7. A. Baumeler, A. Feix, and S. Wolf, Maximal incompatibility of locally classical behavior and global causal order in multiparty scenarios, Phys. Rev. A 90, 042106 (2014).
  8. Ä. Baumeler and S. Wolf, The space of logically consistent classical processes without causal order, New Journal of Physics 18, 013036 (2016a).
  9. S. Popescu and D. Rohrlich, Quantum nonlocality as an axiom, Foundations of Physics 24, 379 (1994).
  10. J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1, 195 (1964).
  11. T. Purves and A. J. Short, Quantum theory cannot violate a causal inequality, Phys. Rev. Lett. 127, 110402 (2021).
  12. E.-E. Tselentis and Ä. Baumeler, Admissible causal structures and correlations, arXiv preprint arXiv:2210.12796  (2022).
  13. Ä. Baumeler and S. Wolf, Device-independent test of causal order and relations to fixed-points, New Journal of Physics 18, 035014 (2016b).
  14. O. Oreshkov and C. Giarmatzi, Causal and causally separable processes, New Journal of Physics 18, 093020 (2016).
  15. J. Barrett, R. Lorenz, and O. Oreshkov, Quantum causal models, arXiv preprint arXiv:1906.10726  (2019).
  16. J. Barrett, R. Lorenz, and O. Oreshkov, Cyclic quantum causal models, Nature communications 12, 1 (2021).
  17. R. Kunjwal and Ä. Baumeler, Trading causal order for locality, arXiv preprint arXiv:2202.00440  (2022).
  18. D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms of ”Hidden” Variables. I, Phys. Rev. 85, 166 (1952a).
  19. D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms of ”Hidden” Variables. II, Phys. Rev. 85, 180 (1952b).
  20. J. S. Bell, On the Problem of Hidden Variables in Quantum Mechanics, Rev. Mod. Phys. 38, 447 (1966).
  21. J. S. Bell, The Theory of Local Beables, Epistemological Letters 9 .
  22. H. M. Wiseman, The two Bell’s theorems of John Bell, J. Phys. A 47, 424001 (2014).
  23. Č. Brukner, Bounding quantum correlations with indefinite causal order, New Journal of Physics 17, 083034 (2015).
  24. E. Wolfe, R. W. Spekkens, and T. Fritz, The inflation technique for causal inference with latent variables, Journal of Causal Inference 7 (2019).
  25. N. S. Móller, B. Sahdo, and N. Yokomizo, Gravitational quantum switch on a superposition of spherical shells, arXiv preprint arXiv:2306.10984  (2023).
  26. O. Oreshkov, Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics, Quantum 3, 206 (2019).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com