Analog vacuum decay from vacuum initial conditions (2307.02549v2)
Abstract: Ultracold atomic gases can undergo phase transitions that mimic relativistic vacuum decay, allowing us to empirically test early-Universe physics in tabletop experiments. We investigate the physics of these analog systems, going beyond previous analyses of the classical equations of motion to study quantum fluctuations in the cold-atom false vacuum. We show that the fluctuation spectrum of this vacuum state agrees with the usual relativistic result in the regime where the classical analogy holds, providing further evidence for the suitability of these systems for studying vacuum decay. Using a suite of semiclassical lattice simulations, we simulate bubble nucleation from this analog vacuum state in a 1D homonuclear potassium-41 mixture, finding qualitative agreement with instanton predictions. We identify realistic parameters for this system that will allow us to study vacuum decay with current experimental capabilities, including a prescription for efficiently scanning over decay rates, and show that this setup will probe the quantum (rather than thermal) decay regime at temperatures $T\lesssim10\,\mathrm{nK}$. Our results help lay the groundwork for using upcoming cold-atom experiments as a new probe of nonperturbative early-Universe physics.
- Sidney R. Coleman, “The Fate of the False Vacuum. 1. Semiclassical Theory,” Phys. Rev. D 15, 2929–2936 (1977), [Erratum: Phys. Rev. D 16, 1248 (1977)].
- Curtis G. Callan, Jr. and Sidney R. Coleman, “The Fate of the False Vacuum. 2. First Quantum Corrections,” Phys. Rev. D 16, 1762–1768 (1977).
- Sidney R. Coleman and Frank De Luccia, “Gravitational Effects on and of Vacuum Decay,” Phys. Rev. D 21, 3305 (1980).
- Andrei D. Linde, “Decay of the False Vacuum at Finite Temperature,” Nucl. Phys. B 216, 421 (1983), [Erratum: Nucl. Phys. B 223, 544 (1983)].
- Erick J. Weinberg, Classical solutions in quantum field theory: Solitons and Instantons in High Energy Physics, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2012).
- Alan H. Guth, “Eternal inflation and its implications,” J. Phys. A 40, 6811–6826 (2007), arXiv:hep-th/0702178 .
- Anthony Aguirre, “Eternal Inflation, past and future,” (2007), arXiv:0712.0571 [hep-th] .
- Stephen M. Feeney, Matthew C. Johnson, Daniel J. Mortlock, and Hiranya V. Peiris, “First Observational Tests of Eternal Inflation,” Phys. Rev. Lett. 107, 071301 (2011a), arXiv:1012.1995 [astro-ph.CO] .
- Stephen M. Feeney, Matthew C. Johnson, Daniel J. Mortlock, and Hiranya V. Peiris, “First Observational Tests of Eternal Inflation: Analysis Methods and WMAP 7-Year Results,” Phys. Rev. D 84, 043507 (2011b), arXiv:1012.3667 [astro-ph.CO] .
- J. Ellis, J. R. Espinosa, G. F. Giudice, A. Hoecker, and A. Riotto, “The Probable Fate of the Standard Model,” Phys. Lett. B 679, 369–375 (2009), arXiv:0906.0954 [hep-ph] .
- Giuseppe Degrassi, Stefano Di Vita, Joan Elias-Miro, Jose R. Espinosa, Gian F. Giudice, Gino Isidori, and Alessandro Strumia, “Higgs mass and vacuum stability in the Standard Model at NNLO,” JHEP 08, 098 (2012), arXiv:1205.6497 [hep-ph] .
- Dario Buttazzo, Giuseppe Degrassi, Pier Paolo Giardino, Gian F. Giudice, Filippo Sala, Alberto Salvio, and Alessandro Strumia, “Investigating the near-criticality of the Higgs boson,” JHEP 12, 089 (2013), arXiv:1307.3536 [hep-ph] .
- Arthur Kosowsky, Michael S. Turner, and Richard Watkins, “Gravitational radiation from colliding vacuum bubbles,” Phys. Rev. D 45, 4514–4535 (1992).
- Marc Kamionkowski, Arthur Kosowsky, and Michael S. Turner, “Gravitational radiation from first order phase transitions,” Phys. Rev. D 49, 2837–2851 (1994), arXiv:astro-ph/9310044 .
- S. W. Hawking, I. G. Moss, and J. M. Stewart, “Bubble Collisions in the Very Early Universe,” Phys. Rev. D 26, 2681 (1982).
- Hideo Kodama, Misao Sasaki, and Katsuhiko Sato, “Abundance of Primordial Holes Produced by Cosmological First Order Phase Transition,” Prog. Theor. Phys. 68, 1979 (1982).
- Gabriella Agazie et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background,” Astrophys. J. Lett. 951, L8 (2023), arXiv:2306.16213 [astro-ph.HE] .
- Adeela Afzal et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Search for Signals from New Physics,” Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
- J. Antoniadis et al., “The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals,” (2023a), arXiv:2306.16214 [astro-ph.HE] .
- J. Antoniadis et al., ‘‘The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe,” (2023b), arXiv:2306.16227 [astro-ph.CO] .
- Pau Amaro-Seoane et al. (LISA), “Laser Interferometer Space Antenna,” (2017), arXiv:1702.00786 [astro-ph.IM] .
- Chiara Caprini, Mark Hindmarsh, Stephan Huber, Thomas Konstandin, Jonathan Kozaczuk, Germano Nardini, Jose Miguel No, Antoine Petiteau, Pedro Schwaller, Géraldine Servant, and David J. Weir, “Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions,” JCAP 04, 001 (2016), arXiv:1512.06239 [astro-ph.CO] .
- Dalila Pirvu, Jonathan Braden, and Matthew C. Johnson, “Bubble clustering in cosmological first order phase transitions,” Phys. Rev. D 105, 043510 (2022), arXiv:2109.04496 [hep-th] .
- Valerio De Luca, Gabriele Franciolini, and Antonio Riotto, “Bubble correlation in first-order phase transitions,” Phys. Rev. D 104, 123539 (2021), arXiv:2110.04229 [hep-ph] .
- O. Fialko, B. Opanchuk, A. I. Sidorov, P. D. Drummond, and J. Brand, “Fate of the false vacuum: towards realization with ultra-cold atoms,” EPL 110, 56001 (2015), arXiv:1408.1163 [cond-mat.quant-gas] .
- Oleksandr Fialko, Bogdan Opanchuk, Andrei I. Sidorov, Peter D. Drummond, and Joachim Brand, “The universe on a table top: engineering quantum decay of a relativistic scalar field from a metastable vacuum,” J. Phys. B 50, 024003 (2017), arXiv:1607.01460 [cond-mat.quant-gas] .
- Jonathan Braden, Matthew C. Johnson, Hiranya V. Peiris, and Silke Weinfurtner, “Towards the cold atom analog false vacuum,” JHEP 07, 014 (2018), arXiv:1712.02356 [hep-th] .
- Thomas P. Billam, Ruth Gregory, Florent Michel, and Ian G. Moss, “Simulating seeded vacuum decay in a cold atom system,” Phys. Rev. D 100, 065016 (2019), arXiv:1811.09169 [hep-th] .
- Jonathan Braden, Matthew C. Johnson, Hiranya V. Peiris, Andrew Pontzen, and Silke Weinfurtner, “Nonlinear Dynamics of the Cold Atom Analog False Vacuum,” JHEP 10, 174 (2019a), arXiv:1904.07873 [hep-th] .
- Thomas P. Billam, Kate Brown, and Ian G. Moss, “Simulating cosmological supercooling with a cold atom system,” Phys. Rev. A 102, 043324 (2020), arXiv:2006.09820 [cond-mat.quant-gas] .
- King Lun Ng, Bogdan Opanchuk, Manushan Thenabadu, Margaret Reid, and Peter D. Drummond, “The fate of the false vacuum: Finite temperature, entropy and topological phase in quantum simulations of the early universe,” PRX Quantum 2, 010350 (2021), arXiv:2010.08665 [quant-ph] .
- Thomas P. Billam, Kate Brown, Andrew J. Groszek, and Ian G. Moss, “Simulating cosmological supercooling with a cold atom system. II. Thermal damping and parametric instability,” Phys. Rev. A 104, 053309 (2021), arXiv:2104.07428 [cond-mat.quant-gas] .
- Thomas P. Billam, Kate Brown, and Ian G. Moss, “False-vacuum decay in an ultracold spin-1 Bose gas,” Phys. Rev. A 105, L041301 (2022), arXiv:2108.05740 [cond-mat.quant-gas] .
- Thomas P. Billam, Kate Brown, and Ian G. Moss, “Bubble nucleation in a cold spin 1 gas,” New J. Phys. 25, 043028 (2023), arXiv:2212.03621 [cond-mat.quant-gas] .
- Alessandro Zenesini, Anna Berti, Riccardo Cominotti, Chiara Rogora, Ian G. Moss, Thomas P. Billam, Iacopo Carusotto, Giacomo Lamporesi, Alessio Recati, and Gabriele Ferrari, “Observation of false vacuum decay via bubble formation in ferromagnetic superfluids,” (2023), arXiv:2305.05225 [hep-ph] .
- Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82, 1225–1286 (2010), arXiv:0812.1496 [cond-mat.other] .
- Clemens Neuenhahn and Florian Marquardt, “Quantum simulation of expanding space-time with tunnel-coupled condensates,” New J. Phys. 17, 125007 (2015), arXiv:1208.2255 [cond-mat.quant-gas] .
- Mohammadamin Tajik, Marek Gluza, Nicolas Sebe, Philipp Schüttelkopf, Federica Cataldini, João Sabino, Frederik Møller, Si-Cong Ji, Sebastian Erne, Giacomo Guarnieri, Spyros Sotiriadis, Jens Eisert, and Jörg Schmiedmayer, “Experimental Observation of Curved Light-Cones in a Quantum Field Simulator,” Proc. Nat. Acad. Sci. 120, e2301287120 (2023), arXiv:2209.09132 [cond-mat.quant-gas] .
- Alexander L. Gaunt, Tobias F. Schmidutz, Igor Gotlibovych, Robert P. Smith, and Zoran Hadzibabic, “Bose-Einstein Condensation of Atoms in a Uniform Potential,” Phys. Rev. Lett. 110, 200406 (2013), arXiv:1212.4453 [cond-mat.quant-gas] .
- Nir Navon, Robert P. Smith, and Zoran Hadzibabic, “Quantum gases in optical boxes,” Nature Phys. 17, 1334–1341 (2021), arXiv:2106.09716 [cond-mat.quant-gas] .
- S. Banik, M. Gutierrez Galan, H. Sosa-Martinez, M. Anderson, S. Eckel, I. B. Spielman, and G. K. Campbell, “Accurate Determination of Hubble Attenuation and Amplification in Expanding and Contracting Cold-Atom Universes,” Phys. Rev. Lett. 128, 090401 (2022), arXiv:2107.08097 [quant-ph] .
- N. Goldman and J. Dalibard, “Periodically-driven quantum systems: Effective Hamiltonians and engineered gauge fields,” Phys. Rev. X 4, 031027 (2014), [Erratum: Phys. Rev. X 5, 029902 (2015)], arXiv:1404.4373 [cond-mat.quant-gas] .
- C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, 2nd ed. (Cambridge University Press, 2008).
- Randall G. Hulet, Jason H. V. Nguyen, and R. Senaratne, “Methods for preparing quantum gases of lithium,” Ref. Sci. Instrum. 91, 011101 (2020), arXiv:1910.07041 [physics.atom-ph] .
- S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, “Observation of Feshbach resonances in a Bose-Einstein condensate,” Nature 392, 151–154 (1998).
- J. Stenger, S. Inouye, M. R. Andrews, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, “Strongly Enhanced Inelastic Collisions in a Bose-Einstein Condensate near Feshbach Resonances,” Phys. Rev. Lett. 82, 2422 (1999).
- M. Lysebo and L. Veseth, “Feshbach resonances and transition rates for cold homonuclear collisions between K39superscriptK39{}^{39}\mathrm{K}start_FLOATSUPERSCRIPT 39 end_FLOATSUPERSCRIPT roman_K and K41superscriptK41{}^{41}\mathrm{K}start_FLOATSUPERSCRIPT 41 end_FLOATSUPERSCRIPT roman_K atoms,” Phys. Rev. A 81, 032702 (2010).
- Jiří Etrych, Gevorg Martirosyan, Alex Cao, Jake A. P. Glidden, Lena H. Dogra, Jeremy M. Hutson, Zoran Hadzibabic, and Christoph Eigen, “Pinpointing Feshbach resonances and testing Efimov universalities in K39superscriptK39{}^{39}\mathrm{K}start_FLOATSUPERSCRIPT 39 end_FLOATSUPERSCRIPT roman_K,” Phys. Rev. Research 5, 013174 (2023), arXiv:2208.13766 [cond-mat.quant-gas] .
- N. R. Claussen, S. J. J. M. F. Kokkelmans, S. T. Thompson, E. A. Donley, E. Hodby, and C. E. Wieman, “Very-high-precision bound-state spectroscopy near a Rb85superscriptRb85{}^{85}\mathrm{Rb}start_FLOATSUPERSCRIPT 85 end_FLOATSUPERSCRIPT roman_Rb Feshbach resonance,” Phys. Rev. A 67, 060701 (2003), arXiv:cond-mat/0302195 .
- Caroline L. Blackley, C. Ruth Le Sueur, Jeremy M. Hutson, Daniel J. McCarron, Michael P. Köppinger, Hung-Wen Cho, Daniel L. Jenkin, and Simon L. Cornish, “Feshbach resonances in ultracold Rb85superscriptRb85{}^{85}\mathrm{Rb}start_FLOATSUPERSCRIPT 85 end_FLOATSUPERSCRIPT roman_Rb,” Phys. Rev. A 87, 033611 (2013), arXiv:1212.5446 [physics.atom-ph] .
- A. Marte, T. Volz, J. Schuster, S. Dürr, G. Rempe, E. G. M. van Kempen, and B. J. Verhaar, “Feshbach Resonances in Rubidium 87: Precision Measurement and Analysis,” Phys. Rev. Lett. 89, 283202 (2002), arXiv:cond-mat/0210651 .
- Thomas Volz, Stephan Dürr, Sebastian Ernst, Andreas Marte, and Gerhard Rempe, “Characterization of elastic scattering near a Feshbach resonance in Rb87superscriptRb87{}^{87}\mathrm{Rb}start_FLOATSUPERSCRIPT 87 end_FLOATSUPERSCRIPT roman_Rb,” Phys. Rev. A 68, 010702 (2003), arXiv:cond-mat/0304180 .
- Cheng Chin, Vladan Vuletić, Andrew J. Kerman, Steven Chu, Eite Tiesinga, Paul J. Leo, and Carl J. Williams, “Precision Feshbach spectroscopy of ultracold Cs2subscriptCs2\mathrm{Cs}_{2}roman_Cs start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” Phys. Rev. A 70, 032701 (2004).
- A. D. Lange, K. Pilch, A. Prantner, F. Ferlaino, B. Engeser, H.-C. Nägerl, R. Grimm, and C. Chin, “Determination of atomic scattering lengths from measurements of molecular binding energies near Feshbach resonances,” Phys. Rev. A 79, 013622 (2009), arXiv:0810.5503 [cond-mat.other] .
- Mateusz Borkowski, Lukas Reichsöllner, Premjith Thekkeppatt, Vincent Barbé, Thijs van Roon, Klaasjan van Druten, and Florian Schreck, “Active stabilization of kilogauss magnetic fields to the ppm level for magnetoassociation on ultranarrow Feshbach resonances,” (2023), arXiv:2303.13682 [atom-ph] .
- Jonathan Braden, Matthew C. Johnson, Hiranya V. Peiris, Andrew Pontzen, and Silke Weinfurtner, “New Semiclassical Picture of Vacuum Decay,” Phys. Rev. Lett. 123, 031601 (2019b), [Erratum: Phys. Rev. Lett. 129, 059901 (2022)], arXiv:1806.06069 [hep-th] .
- M. J. Werner and P. D. Drummond, “Robust Algorithms for Solving Stochastic Partial Differential Equations,” J. Comput. Phys. 132, 312–326 (1997).
- M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S. M. Tan, M. J. Collett, D. F. Walls, and R. Graham, “Dynamical quantum noise in trapped Bose-Einstein condensates,” Phys. Rev. A 58, 4824–4835 (1998), arXiv:cond-mat/9807349 [cond-mat.soft] .
- P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh, and C. W. Gardiner, “Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques,” Adv. Phys. 57, 363 (2008), arXiv:0809.1487 [cond-mat.stat-mech] .
- S. Yu. Khlebnikov and I. I. Tkachev, “Classical decay of inflaton,” Phys. Rev. Lett. 77, 219–222 (1996), arXiv:hep-ph/9603378 .
- S. Yu. Khlebnikov and I. I. Tkachev, “The Universe after inflation: The Wide resonance case,” Phys. Lett. B 390, 80–86 (1997a), arXiv:hep-ph/9608458 .
- Tomislav Prokopec and Thomas G. Roos, “Lattice study of classical inflaton decay,” Phys. Rev. D 55, 3768–3775 (1997), arXiv:hep-ph/9610400 .
- S. Yu. Khlebnikov and I. I. Tkachev, “Resonant decay of Bose condensates,” Phys. Rev. Lett. 79, 1607–1610 (1997b), arXiv:hep-ph/9610477 .
- Gary N. Felder and Igor Tkachev, “LATTICEEASY: A Program for lattice simulations of scalar fields in an expanding universe,” Comput. Phys. Commun. 178, 929–932 (2008), arXiv:hep-ph/0011159 .
- A. Rajantie, P. M. Saffin, and Edmund J. Copeland, “Electroweak preheating on a lattice,” Phys. Rev. D 63, 123512 (2001), arXiv:hep-ph/0012097 .
- J. Richard Bond, Andrei V. Frolov, Zhiqi Huang, and Lev Kofman, “Non-Gaussian Spikes from Chaotic Billiards in Inflation Preheating,” Phys. Rev. Lett. 103, 071301 (2009), arXiv:0903.3407 [astro-ph.CO] .
- Mustafa A. Amin, Richard Easther, and Hal Finkel, “Inflaton Fragmentation and Oscillon Formation in Three Dimensions,” JCAP 12, 001 (2010), arXiv:1009.2505 [astro-ph.CO] .
- Mustafa A. Amin, Richard Easther, Hal Finkel, Raphael Flauger, and Mark P. Hertzberg, “Oscillons After Inflation,” Phys. Rev. Lett. 108, 241302 (2012), arXiv:1106.3335 [astro-ph.CO] .
- Daniel G. Figueroa, Adrien Florio, Francisco Torrenti, and Wessel Valkenburg, “The art of simulating the early Universe – Part I,” JCAP 04, 035 (2021), arXiv:2006.15122 [astro-ph.CO] .
- Daniel G. Figueroa, Adrien Florio, Francisco Torrenti, and Wessel Valkenburg, “CosmoLattice: A modern code for lattice simulations of scalar and gauge field dynamics in an expanding universe,” Comput. Phys. Commun. 283, 108586 (2023), arXiv:2102.01031 [astro-ph.CO] .
- Mark P. Hertzberg, Fabrizio Rompineve, and Neil Shah, “Quantitative Analysis of the Stochastic Approach to Quantum Tunneling,” Phys. Rev. D 102, 076003 (2020), arXiv:2009.00017 [hep-th] .
- Haruo Yoshida, “Construction of higher order symplectic integrators,” Phys. Lett. A 150, 262–268 (1990).
- Jonathan Braden, Matthew C. Johnson, Hiranya V. Peiris, Andrew Pontzen, and Silke Weinfurtner, “Mass renormalization in lattice simulations of false vacuum decay,” Phys. Rev. D 107, 083509 (2023), arXiv:2204.11867 [hep-th] .
- C. W. Gardiner, J. R. Anglin, and T. I. A. Fudge, “The stochastic Gross-Pitaevskii equation,” J. Phys. B 35, 1555 (2002), arXiv:cond-mat/0112129 .
- Christian Deppner, Waldemar Herr, Merle Cornelius, Peter Stromberger, Tammo Sternke, Christoph Grzeschik, Alexander Grote, Jan Rudolph, Sven Herrman, Markus Krutzik, André Wenzlawski, Robin Corgier, Eric Charron, David Guéry-Odelin, Naceur Gaaloul, Claus Lämmerzahl, Achim Peters, Patrick Windpassinger, and Ernst M. Rasel, “Collective-Mode Enhanced Matter-Wave Optics,” Phys. Rev. Lett. 127, 100401 (2021).
- Michael E. Peskin and Daniel V. Schroeder, An Introduction to quantum field theory (Addison-Wesley, Reading, USA, 1995).