Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robotic Sonographer: Autonomous Robotic Ultrasound using Domain Expertise in Bayesian Optimization (2307.02442v1)

Published 5 Jul 2023 in cs.RO

Abstract: Ultrasound is a vital imaging modality utilized for a variety of diagnostic and interventional procedures. However, an expert sonographer is required to make accurate maneuvers of the probe over the human body while making sense of the ultrasound images for diagnostic purposes. This procedure requires a substantial amount of training and up to a few years of experience. In this paper, we propose an autonomous robotic ultrasound system that uses Bayesian Optimization (BO) in combination with the domain expertise to predict and effectively scan the regions where diagnostic quality ultrasound images can be acquired. The quality map, which is a distribution of image quality in a scanning region, is estimated using Gaussian process in BO. This relies on a prior quality map modeled using expert's demonstration of the high-quality probing maneuvers. The ultrasound image quality feedback is provided to BO, which is estimated using a deep convolution neural network model. This model was previously trained on database of images labelled for diagnostic quality by expert radiologists. Experiments on three different urinary bladder phantoms validated that the proposed autonomous ultrasound system can acquire ultrasound images for diagnostic purposes with a probing position and force accuracy of 98.7% and 97.8%, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. A. Rykkje, J. F. Carlsen, and M. B. Nielsen, “Hand-held ultrasound devices compared with high-end ultrasound systems: a systematic review,” Diagnostics, vol. 9, no. 2, p. 61, 2019.
  2. S. J. Adams, B. Burbridge, H. Obaid, G. Stoneham, P. Babyn, and I. Mendez, “Telerobotic sonography for remote diagnostic imaging: narrative review of current developments and clinical applications,” Journal of Ultrasound in Medicine, vol. 40, no. 7, pp. 1287–1306, 2021.
  3. D. Raina, H. Singh, S. K. Saha, C. Arora, A. Agarwal, S. Chandrashekhara, K. Rangarajan, and S. Nandi, “Comprehensive telerobotic ultrasound system for abdominal imaging: Development and in-vivo feasibility study,” in 2021 International Symposium on Medical Robotics (ISMR), pp. 1–7, IEEE, 2021.
  4. J. Wang, C. Peng, Y. Zhao, R. Ye, J. Hong, H. Huang, and L. Chen, “Application of a robotic tele-echography system for covid-19 pneumonia,” Journal of Ultrasound in Medicine, vol. 40, no. 2, pp. 385–390, 2021.
  5. S. Duan, L. Liu, Y. Chen, L. Yang, Y. Zhang, S. Wang, L. Hao, and L. Zhang, “A 5g-powered robot-assisted teleultrasound diagnostic system in an intensive care unit,” Critical Care, vol. 25, no. 1, pp. 1–9, 2021.
  6. S. J. Adams, B. E. Burbridge, A. Badea, L. Langford, V. Vergara, R. Bryce, L. Bustamante, I. M. Mendez, and P. S. Babyn, “Initial experience using a telerobotic ultrasound system for adult abdominal sonography,” Canadian Association of Radiologists’ Journal, vol. 68, no. 3, pp. 308–314, 2017.
  7. E. Rojas-Muñoz and J. P. Wachs, “Assessing task understanding in remote ultrasound diagnosis via gesture analysis,” Pattern Analysis and Applications, vol. 24, no. 4, pp. 1489–1500, 2021.
  8. K. Li, Y. Xu, and M. Q.-H. Meng, “An overview of systems and techniques for autonomous robotic ultrasound acquisitions,” IEEE Transactions on Medical Robotics and Bionics, vol. 3, no. 2, pp. 510–524, 2021.
  9. R. Mebarki, A. Krupa, and F. Chaumette, “2-d ultrasound probe complete guidance by visual servoing using image moments,” IEEE Transactions on Robotics, vol. 26, no. 2, pp. 296–306, 2010.
  10. R. Nakadate, J. Solis, A. Takanishi, E. Minagawa, M. Sugawara, and K. Niki, “Out-of-plane visual servoing method for tracking the carotid artery with a robot-assisted ultrasound diagnostic system,” in 2011 IEEE International Conference on Robotics and Automation, pp. 5267–5272, IEEE, 2011.
  11. C. Nadeau, A. Krupa, J. Petr, and C. Barillot, “Moments-based ultrasound visual servoing: From a mono-to multiplane approach,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1558–1564, 2016.
  12. A. Karamalis, W. Wein, T. Klein, and N. Navab, “Ultrasound confidence maps using random walks,” Medical image analysis, vol. 16, no. 6, pp. 1101–1112, 2012.
  13. P. Chatelain, A. Krupa, and N. Navab, “Confidence-driven control of an ultrasound probe,” IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1410–1424, 2017.
  14. Z. Jiang, M. Grimm, M. Zhou, J. Esteban, W. Simson, G. Zahnd, and N. Navab, “Automatic normal positioning of robotic ultrasound probe based only on confidence map optimization and force measurement,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1342–1349, 2020.
  15. Z. Jiang, Z. Li, M. Grimm, M. Zhou, M. Esposito, W. Wein, W. Stechele, T. Wendler, and N. Navab, “Autonomous robotic screening of tubular structures based only on real-time ultrasound imaging feedback,” IEEE Transactions on Industrial Electronics, vol. 69, no. 7, pp. 7064–7075, 2021.
  16. Z. Jiang, Y. Gao, L. Xie, and N. Navab, “Towards autonomous atlas-based ultrasound acquisitions in presence of articulated motion,” IEEE Robotics and Automation Letters, 2022.
  17. C. Hennersperger, B. Fuerst, S. Virga, O. Zettinig, B. Frisch, T. Neff, and N. Navab, “Towards mri-based autonomous robotic us acquisitions: a first feasibility study,” IEEE transactions on medical imaging, vol. 36, no. 2, pp. 538–548, 2016.
  18. X. Ma, Z. Zhang, and H. K. Zhang, “Autonomous scanning target localization for robotic lung ultrasound imaging,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9467–9474, IEEE, 2021.
  19. K. Li, J. Wang, Y. Xu, H. Qin, D. Liu, L. Liu, and M. Q.-H. Meng, “Autonomous navigation of an ultrasound probe towards standard scan planes with deep reinforcement learning,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 8302–8308, IEEE, 2021.
  20. K. Li, Y. Xu, J. Wang, D. Ni, L. Liu, and M. Q.-H. Meng, “Image-guided navigation of a robotic ultrasound probe for autonomous spinal sonography using a shadow-aware dual-agent framework,” IEEE Transactions on Medical Robotics and Bionics, vol. 4, no. 1, pp. 130–144, 2021.
  21. Y. Yan and J. Pan, “Fast localization and segmentation of tissue abnormalities by autonomous robotic palpation,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1707–1714, 2021.
  22. J. Chen, D. Zhang, A. Munawar, R. Zhu, B. Lo, G. S. Fischer, and G.-Z. Yang, “Supervised semi-autonomous control for surgical robot based on banoian optimization,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2943–2949, IEEE, 2020.
  23. Y. Ding, M. Kim, S. Kuindersma, and C. J. Walsh, “Human-in-the-loop optimization of hip assistance with a soft exosuit during walking,” Science robotics, vol. 3, no. 15, p. eaar5438, 2018.
  24. Y. Huang, W. Xiao, C. Wang, H. Liu, R. Huang, and Z. Sun, “Towards fully autonomous ultrasound scanning robot with imitation learning based on clinical protocols,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3671–3678, 2021.
  25. R. Goel, F. Abhimanyu, K. Patel, J. Galeotti, and H. Choset, “Autonomous ultrasound scanning using bayesian optimization and hybrid force control,” in 2022 International Conference on Robotics and Automation (ICRA), pp. 8396–8402, IEEE, 2022.
  26. M. Akbari, J. Carriere, T. Meyer, R. Sloboda, S. Husain, N. Usmani, and M. Tavakoli, “Robotic ultrasound scanning with real-time image-based force adjustment: quick response for enabling physical distancing during the covid-19 pandemic,” Frontiers in Robotics and AI, vol. 8, p. 645424, 2021.
  27. Z. Wang, G. E. Dahl, K. Swersky, C. Lee, Z. Mariet, Z. Nado, J. Gilmer, J. Snoek, and Z. Ghahramani, “Pre-training helps bayesian optimization too,” arXiv preprint arXiv:2207.03084, 2022.
  28. C. Hvarfner, D. Stoll, A. Souza, M. Lindauer, F. Hutter, and L. Nardi, “pibo: Augmenting acquisition functions with user beliefs for bayesian optimization,” arXiv preprint arXiv:2204.11051, 2022.
  29. Z. Wang, B. Kim, and L. P. Kaelbling, “Regret bounds for meta bayesian optimization with an unknown gaussian process prior,” Advances in Neural Information Processing Systems, vol. 31, 2018.
  30. E. Ayvali, A. Ansari, L. Wang, N. Simaan, and H. Choset, “Utility-guided palpation for locating tissue abnormalities,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 864–871, 2017.
  31. Y. Zhu, A. Smith, and K. Hauser, “Automated heart and lung auscultation in robotic physical examinations,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4204–4211, 2022.
  32. S. H. Chandrashekhara, K. Rangarajan, A. Agrawal, S. Thulkar, S. Gamanagatti, D. Raina, S. K. Saha, and C. Arora, “Robotic ultrasound: An initial feasibility study,” World Journal of Methodology, vol. 12, no. 4, pp. 274–284, 2022.
  33. P. Cantin and K. Knapp, “Diagnostic image quality in gynaecological ultrasound: Who should measure it, what should we measure and how?,” Ultrasound, vol. 22, no. 1, pp. 44–51, 2014.
  34. Y. Song, Z. Zhong, B. Zhao, P. Zhang, Q. Wang, Z. Wang, L. Yao, F. Lv, and Y. Hu, “Medical ultrasound image quality assessment for autonomous robotic screening,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6290–6296, 2022.
  35. S. Basu, M. Gupta, P. Rana, P. Gupta, and C. Arora, “Surpassing the human accuracy: Detecting gallbladder cancer from usg images with curriculum learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20886–20896, 2022.
  36. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.
  37. P. M. Cheng and H. S. Malhi, “Transfer learning with convolutional neural networks for classification of abdominal ultrasound images,” Journal of digital imaging, vol. 30, no. 2, pp. 234–243, 2017.
  38. D. Raina, K. Verma, S. Chandrashekhara, and S. K. Saha, “Slim u-net: Efficient anatomical feature preserving u-net architecture for ultrasound image segmentation,” in 2022 International Conference on Biomedical and Bioinformatics Engineering (ICBBE), pp. 1–8, ACM, 2022.
Citations (11)

Summary

We haven't generated a summary for this paper yet.