Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Utility-Aware Load Shedding for Real-time Video Analytics at the Edge (2307.02409v1)

Published 5 Jul 2023 in cs.DC

Abstract: Real-time video analytics typically require video frames to be processed by a query to identify objects or activities of interest while adhering to an end-to-end frame processing latency constraint. Such applications impose a continuous and heavy load on backend compute and network infrastructure because of the need to stream and process all video frames. Video data has inherent redundancy and does not always contain an object of interest for a given query. We leverage this property of video streams to propose a lightweight Load Shedder that can be deployed on edge servers or on inexpensive edge devices co-located with cameras and drop uninteresting video frames. The proposed Load Shedder uses pixel-level color-based features to calculate a utility score for each ingress video frame, which represents the frame's utility toward the query at hand. The Load Shedder uses a minimum utility threshold to select interesting frames to send for query processing. Dropping unnecessary frames enables the video analytics query in the backend to meet the end-to-end latency constraint with fewer compute and network resources. To guarantee a bounded end-to-end latency at runtime, we introduce a control loop that monitors the backend load for the given query and dynamically adjusts the utility threshold. Performance evaluations show that the proposed Load Shedder selects a large portion of frames containing each object of interest while meeting the end-to-end frame processing latency constraint. Furthermore, the Load Shedder does not impose a significant latency overhead when running on edge devices with modest compute resources.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Z. Xu, S. Sinha, S. Harshil S, and U. Ramachandran, “Space-time vehicle tracking at the edge of the network,” in Proceedings of the 2019 Workshop on Hot Topics in Video Analytics and Intelligent Edges.   Los Cabos, Mexico: ACM, 2019, pp. 15–20.
  2. T. T. Le, S. T. Tran, S. Mita, and T. D. Nguyen, “Real time traffic sign detection using color and shape-based features,” in Asian Conference on Intelligent Information and Database Systems.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 268–278.
  3. Wobot.ai. (2021) Team Wobot how is video analytics driving industry 4.0. Wobot Intelligence. [Online]. Available: https://wobot.ai/video-analytics/how-is-video-analytics-driving-industry-4-0/
  4. G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose, L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer app for edge computing,” computer, vol. 50, no. 10, pp. 58–67, 2017.
  5. U. Ramachandran, H. Gupta, A. Hall, E. Saurez, and Z. Xu, “A case for elevating the edge to be a peer of the cloud,” GetMobile: Mobile Computing and Communications, vol. 24, no. 3, pp. 14–19, 2021.
  6. M. Zhang, F. Wang, Y. Zhu, J. Liu, and Z. Wang, “Towards cloud-edge collaborative online video analytics with fine-grained serverless pipelines,” in Proceedings of the 12th ACM Multimedia Systems Conference.   Istanbul, Turkey: ACM, 2021, pp. 80–93.
  7. N. Tatbul and S. Zdonik, “Window-aware load shedding for aggregation queries over data streams,” in Proc. of the 32nd Int. Conf. on Very Large Data Bases, 2006.
  8. N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker, “Load shedding in a data stream manager,” in Proc. of the 29th Int. Conf. on Very Large Data Bases, 2003.
  9. A. Slo, S. Bhowmik, and K. Rothermel, “espice: Probabilistic load shedding from input event streams in complex event processing,” in Proceedings of the 20th International Middleware Conference, ser. Middleware ’19.   ACM, 2019.
  10. A. Slo, S. Bhowmik, A. Flaig, and K. Rothermel, “pspice: partial match shedding for complex event processing,” in 2019 IEEE International Conference on Big Data (Big Data).   IEEE, 2019, pp. 372–382.
  11. B. Zhao, N. Q. V. Hung, and M. Weidlich, “Load shedding for complex event processing: Input-based and state-based techniques,” in 2020 IEEE 36th International Conference on Data Engineering (ICDE).   IEEE, 2020, pp. 1093–1104.
  12. C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kaminsky, and S. R. Dulloor, “Scaling video analytics on constrained edge nodes,” CoRR, vol. abs/1905.13536, 2019. [Online]. Available: http://arxiv.org/abs/1905.13536
  13. C. Zhang, Q. Cao, H. Jiang, W. Zhang, J. Li, and J. Yao, “A fast filtering mechanism to improve efficiency of large-scale video analytics,” IEEE Transactions on Computers, vol. 69, no. 6, pp. 914–928, 2020.
  14. Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Netravali, “Reducto: On-camera filtering for resource-efficient real-time video analytics,” in Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication.   Virtual: ACM, 2020, pp. 359–376.
  15. U. K. Pillai and D. Valles, “Vehicle type and color classification and detection for amber and silver alert emergencies using machine learning,” in 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS).   IEEE, 2020, pp. 1–5.
  16. S. Roy and M. S. Rahman, “Emergency vehicle detection on heavy traffic road from cctv footage using deep convolutional neural network,” in 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE).   IEEE, 2019, pp. 1–6.
  17. L. A. Varga, B. Kiefer, M. Messmer, and A. Zell, “Seadronessee: A maritime benchmark for detecting humans in open water,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 2260–2270.
  18. H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M. J. Freedman, “Live video analytics at scale with approximation and delay-tolerance,” in 14th {normal-{\{{USENIX}normal-}\}} Symposium on Networked Systems Design and Implementation ({normal-{\{{NSDI}normal-}\}} 17).   Boston, MA: USENIX, 2017, pp. 377–392.
  19. J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica, “Chameleon: scalable adaptation of video analytics,” in Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication.   Budapest, Hungary: ACM, 2018, pp. 253–266.
  20. K. Wu, Y. Jin, W. Miao, Z. Zeng, Z. Qian, J. Wang, M. Zhou, and T. Cao, “Soudain: Online adaptive profile configuration for real-time video analytics,” in 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), IEEE.   Virtual: IEEE/ACM, 2021, pp. 1–10.
  21. S. Naderiparizi, P. Zhang, M. Philipose, B. Priyantha, J. Liu, and D. Ganesan, “Glimpse: A programmable early-discard camera architecture for continuous mobile vision,” in Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services.   Niagara Falls, NY: ACM, 2017, pp. 292–305.
  22. J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S.-W. Yang, and M. Satyanarayanan, “Bandwidth-efficient live video analytics for drones via edge computing,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC), IEEE.   Bellevue, WA: IEEE/ACM, 2018, pp. 159–173.
  23. HSL and HSV, “Hsv cylinder,” https://en.wikipedia.org/wiki/HSL_and_HSV#/media/File:HSV_color_solid_cylinder_saturation_gray.png, 2010, [Online; accessed 2022-01-14].
  24. B. Haynes, A. Mazumdar, M. Balazinska, L. Ceze, and A. Cheung, “Visual road: A video data management benchmark,” in SIGMOD.   Amsterdam, NL: ACM, 2019, pp. 972–987.
  25. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban driving simulator,” in Conference on robot learning.   Mountain View, CA: PMLR, 2017, pp. 1–16.
  26. ZeroMQ, “Zeromq,” https://zeromq.org/, 2022, [Online; accessed 2022-01-14].
  27. Cap’n Proto, “Cap’n proto: Serialization protocol,” https://capnproto.org/, 2022, [Online; accessed 2022-01-14].
  28. M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 10 781–10 790.
  29. PyPi, “Dominant color detection,” https://pypi.org/project/dominant-color-detection/, 2020, [Online; accessed 2022-01-31].
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Enrique Saurez (6 papers)
  2. Harshit Gupta (27 papers)
  3. Sukanya Bhowmik (11 papers)
  4. Umakishore Ramachandran (7 papers)
  5. Kurt Rothermel (23 papers)
  6. Henriette Roger (1 paper)
Citations (2)