$ν^2$-Flows: Fast and improved neutrino reconstruction in multi-neutrino final states with conditional normalizing flows (2307.02405v3)
Abstract: In this work we introduce $\nu2$-Flows, an extension of the $\nu$-Flows method to final states containing multiple neutrinos. The architecture can natively scale for all combinations of object types and multiplicities in the final state for any desired neutrino multiplicities. In $t\bar{t}$ dilepton events, the momenta of both neutrinos and correlations between them are reconstructed more accurately than when using the most popular standard analytical techniques, and solutions are found for all events. Inference time is significantly faster than competing methods, and can be reduced further by evaluating in parallel on graphics processing units. We apply $\nu2$-Flows to $t\bar{t}$ dilepton events and show that the per-bin uncertainties in unfolded distributions is much closer to the limit of performance set by perfect neutrino reconstruction than standard techniques. For the chosen double differential observables $\nu2$-Flows results in improved statistical precision for each bin by a factor of 1.5 to 2 in comparison to the Neutrino Weighting method and up to a factor of four in comparison to the Ellipse approach.
- L. R. Evans and P. Bryant, LHC Machine, JINST 3, S08001.
- ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron Collider, JINST 3, S08003.
- CMS Collaboration, The CMS experiment at the CERN LHC, JINST 3, S08004.
- M. Grossi et al., Comparing traditional and deep-learning techniques of kinematic reconstruction for polarization discrimination in vector boson scattering, Eur. Phys. J. C 80, 1144 (2020).
- J. Kvita, Study of methods of resolved top quark reconstruction in semileptonic tt¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG decay, Nucl. Instrum. Methods Phys. Res. A 900, 84 (2018).
- ATLAS Collaboration, Measurements of top-quark pair differential and double-differential cross-sections in the ℓℓ\ellroman_ℓ+jets channel with pp𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using the ATLAS detector, Eur. Phys. J. C 79, 1028 (2019a), [Erratum: Eur. Phys. J. C 80, 1092 (2020)].
- CMS Collaboration, Measurement of differential tt¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG production cross sections in the full kinematic range using lepton+jets events from proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV, Phys. Rev. D 104, 092013 (2021).
- ATLAS Collaboration, Determination of the top-quark pole mass using tt¯𝑡¯𝑡t\overline{t}italic_t over¯ start_ARG italic_t end_ARG + 1-jet events collected with the ATLAS experiment in 7 TeV pp collisions, JHEP 10, 121.
- CMS Collaboration, Measurement of the top quark mass with lepton+jets final states using pp𝑝𝑝ppitalic_p italic_p collisions at s=13TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV, Eur. Phys. J. C 78, 891 (2018), [Erratum: Eur. Phys. J. C 82, 323 (2022)].
- ATLAS Collaboration, Measurement of the top quark mass in the tt¯→→𝑡¯𝑡absentt\bar{t}\rightarrowitalic_t over¯ start_ARG italic_t end_ARG → lepton+jets channel from s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV ATLAS data and combination with previous results, Eur. Phys. J. C 79, 290 (2019b).
- ATLAS Collaboration, Measurement of the top-quark mass in tt¯+1𝑡¯𝑡1t\bar{t}+1italic_t over¯ start_ARG italic_t end_ARG + 1-jet events collected with the ATLAS detector in pp𝑝𝑝ppitalic_p italic_p collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV, JHEP 11, 150.
- ATLAS Collaboration, Evidence for the charge asymmetry in pp→tt¯→𝑝𝑝𝑡¯𝑡pp\rightarrow t\bar{t}italic_p italic_p → italic_t over¯ start_ARG italic_t end_ARG production at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector (2022), arXiv:2208.12095 [hep-ex] .
- B. Abbott et al. (D0), Measurement of the top quark mass using dilepton events, Phys. Rev. Lett. 80, 2063 (1998), arXiv:hep-ex/9706014 .
- L. Sonnenschein, Algebraic approach to solve tt¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG dilepton equations, Phys. Rev. D 72, 095020 (2005), arXiv:hep-ph/0510100 .
- B. A. Betchart, R. Demina, and A. Harel, Analytic solutions for neutrino momenta in decay of top quarks, Nucl. Instrum. Meth. A 736, 169 (2014), arXiv:1305.1878 [hep-ph] .
- CMS Collaboration, Measurement of the tt¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG production cross section and the top quark mass in the dilepton channel in pp𝑝𝑝ppitalic_p italic_p collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV, JHEP 07, 049, arXiv:1105.5661 [hep-ex] .
- CMS Collaboration, Measurement of the Top-Quark Mass in tt¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG Events with Dilepton Final States in pp𝑝𝑝ppitalic_p italic_p Collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV, Eur. Phys. J. C 72, 2202 (2012), arXiv:1209.2393 [hep-ex] .
- ATLAS Collaboration, Measurement of Top Quark Polarization in Top-Antitop Events from Proton-Proton Collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 TeV Using the ATLAS Detector, Phys. Rev. Lett. 111, 232002 (2013), arXiv:1307.6511 [hep-ex] .
- CMS Collaboration, Measurements of the tt¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG charge asymmetry using the dilepton decay channel in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 7 TeV, JHEP 04, 191, arXiv:1402.3803 [hep-ex] .
- ATLAS Collaboration, Measurements of spin correlation in top-antitop quark events from proton-proton collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV using the ATLAS detector, Phys. Rev. D 90, 112016 (2014), arXiv:1407.4314 [hep-ex] .
- ATLAS Collaboration, Measurement of the charge asymmetry in dileptonic decays of top quark pairs in pp𝑝𝑝ppitalic_p italic_p collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV using the ATLAS detector, JHEP 05, 061, arXiv:1501.07383 [hep-ex] .
- D0 Collaboration, Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting, Phys. Lett. B 752, 18 (2016), arXiv:1508.03322 [hep-ex] .
- CMS Collaboration, Measurements of t t-bar spin correlations and top quark polarization using dilepton final states in pp collisions at sqrt(s) = 8 TeV, Phys. Rev. D 93, 052007 (2016a), arXiv:1601.01107 [hep-ex] .
- CMS Collaboration, Measurements of tt¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG charge asymmetry using dilepton final states in pp collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV, Phys. Lett. B 760, 365 (2016b), arXiv:1603.06221 [hep-ex] .
- ATLAS Collaboration, Measurements of top quark spin observables in tt¯𝑡¯𝑡t\overline{t}italic_t over¯ start_ARG italic_t end_ARG events using dilepton final states in s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV pp collisions with the ATLAS detector, JHEP 03, 113, arXiv:1612.07004 [hep-ex] .
- ATLAS Collaboration, Measurements of top-quark pair differential cross-sections in the eμ𝑒𝜇e\muitalic_e italic_μ channel in pp𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using the ATLAS detector, Eur. Phys. J. C 77, 292 (2017b), arXiv:1612.05220 [hep-ex] .
- ATLAS Collaboration, Measurements of top-quark pair spin correlations in the eμ𝑒𝜇e\muitalic_e italic_μ channel at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using pp𝑝𝑝ppitalic_p italic_p collisions in the ATLAS detector, Eur. Phys. J. C 80, 754 (2020), arXiv:1903.07570 [hep-ex] .
- CMS Collaboration, Measurement of the top quark polarization and tt¯t¯t\mathrm{t\bar{t}}roman_t over¯ start_ARG roman_t end_ARG spin correlations using dilepton final states in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV, Phys. Rev. D 100, 072002 (2019), arXiv:1907.03729 [hep-ex] .
- E. G. Tabak and E. Vanden-Eijnden, Density estimation by dual ascent of the log-likelihood, Commun. Math. Sci. 8, 217 (2010).
- L. Ardizzone et al., Guided image generation with conditional invertible neural networks (2019), arXiv:1907.02392 [cs.CV] .
- M. Zaheer et al., Deep sets, in Proceedings of Advances in Neural Information Processing Systems, Vol. 30 (Long Beach, USA, 2017) arXiv:1703.06114 [cs.LG] .
- J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization (2016), arXiv:1607.06450 [stat.ML] .
- C. Durkan et al., Neural spline flows, in Proceedings of Advances in Neural Information Processing Systems, Vol. 32 (Vancouver, Canada, 2019) arXiv:1906.04032 [stat.ML] .
- C. Durkan et al., nflows: normalizing flows in PyTorch (2020).
- I. Loshchilov and F. Hutter, Decoupled weight decay regularization (2017), arXiv:1711.05101 [cs.LG] .
- J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07, 79.
- T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178, 852 (2008).
- R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867, 244 (2013).
- A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75, 132 (2015).
- P. Skands, S. Carrazza, and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74, 3024 (2014), arXiv:1404.5630 [hep-ph] .
- J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02, 057.
- M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04, 063.
- M. Cacciari, G. P. Salam, and G. Soyez, Fastjet user manual, Eur. Phys. J. C 72, 1 (2012).
- CMS Collaboration, Measurement of double-differential cross sections for top quark pair production in pp collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV and impact on parton distribution functions, Eur. Phys. J. C 77, 459 (2017), arXiv:1703.01630 [hep-ex] .
- A. Hocker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instrum. Meth. A 372, 469 (1996), arXiv:hep-ph/9509307 .
- N. D. Gagunashvili, Machine learning approach to inverse problem and unfolding procedure, arXiv:1004.2006 [physics.data-an] (2010).
- K. Datta, D. Kar, and D. Roy, Unfolding with Generative Adversarial Networks, arXiv:1806.00433 [physics.data-an] (2018).
- J. Chan and B. Nachman, Unbinned profiled unfolding, Phys. Rev. D 108, 016002 (2023), arXiv:2302.05390 [hep-ph] .
- M. J. Fenton et al., Permutationless many-jet event reconstruction with symmetry preserving attention networks, Phys. Rev. D 105, 112008 (2022).
- A. Shmakov et al., Spanet: Generalized permutationless set assignment for particle physics using symmetry preserving attention, SciPost Phys. 12, 178 (2022).