The refined solution to the Capelli eigenvalue problem for $\mathfrak{gl}(m|n)\oplus\mathfrak{gl}(m|n)$ and $\mathfrak{gl}(m|2n)$ (2307.02307v2)
Abstract: Let $\mathfrak g$ be either the Lie superalgebra $\mathfrak{gl}(V)\oplus\mathfrak{gl}(V)$ where $V:=\mathbb C{m|n}$ or the Lie superalgebra $\mathfrak{gl}(V)$ where $V:=\mathbb C{m|2n}$. Furthermore, let $W$ be the $\mathfrak g$-module defined by $W:=V\otimes V*$ in the former case and $W:=\mathcal S2(V)$ in the latter case. Associated to $(\mathfrak g,W)$ there exists a distinguished basis of Capelli operators $\left{D\lambda\right}_{\lambda\in\Omega}$, naturally indexed by a set of hook partitions $\Omega$, for the subalgebra of $\mathfrak g$-invariants in the superalgebra $\mathcal{PD}(W)$ of superdifferential operators on $W$. Let $\mathfrak b$ be a Borel subalgebra of $\mathfrak g$. We compute eigenvalues of the $D\lambda$ on the irreducible $\mathfrak g$-submodules of $\mathcal{P}(W)$ and obtain them explicitly as the evaluation of the interpolation super Jack polynomials of Sergeev--Veselov at suitable affine functions of the $\mathfrak b$-highest weight. While the former case is straightforward, the latter is significantly more complex. This generalizes a result by Sahi, Salmasian and Serganova for these cases, where such formulas were given for a fixed choice of Borel subalgebra.
- Mengyuan Cao. The Refined Solution to the Capelli Eigenvalue Problem for 𝔤𝔩(m|n)⊕𝔤𝔩(m|n)direct-sum𝔤𝔩conditional𝑚𝑛𝔤𝔩conditional𝑚𝑛\mathfrak{gl}(m|n)\oplus\mathfrak{gl}(m|n)fraktur_g fraktur_l ( italic_m | italic_n ) ⊕ fraktur_g fraktur_l ( italic_m | italic_n ) and 𝔤𝔩(m|2n)𝔤𝔩conditional𝑚2𝑛\mathfrak{gl}(m|2n)fraktur_g fraktur_l ( italic_m | 2 italic_n ). PhD thesis, University of Ottawa, 2022.
- Dualities and representations of Lie superalgebras. American Mathematical Society, 2013.
- The Capelli identity, tube domains, and the generalized Laplace transform. Advances in Mathematics, 87(1):71–92, 1991.
- Jordan algebras and Capelli identities. Inventiones Mathematicae, 112(1):657–664, 1993.
- F. Knop and S. Sahi. Difference equations and symmetric polynomials defined by their zeros. International Mathematics Research Notices, 1996:473–486, 1996.
- Shifted Jack polynomials, binomial formula, and applications. Mathematical Research Letters, 4(1):67–78, 1997.
- Siddhartha Sahi. The spectrum of certain invariant differential operators associated to a hermitian symmetric space. Lie Theory and Geometry, page 569–576, 1994.
- The Capelli Eigenvalue Problem for Lie superalgebras. Mathematische Zeitschrift, 2020.
- Generalised discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomials. Advances in Mathematics, 192:341–375, 2005.
- Orbits and invariants of super Weyl groupoid. Int. Math. Res. Not. IMRN 2017, no. 20, 6149–6167.