Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The refined solution to the Capelli eigenvalue problem for $\mathfrak{gl}(m|n)\oplus\mathfrak{gl}(m|n)$ and $\mathfrak{gl}(m|2n)$ (2307.02307v2)

Published 5 Jul 2023 in math.RT, math.CO, and math.RA

Abstract: Let $\mathfrak g$ be either the Lie superalgebra $\mathfrak{gl}(V)\oplus\mathfrak{gl}(V)$ where $V:=\mathbb C{m|n}$ or the Lie superalgebra $\mathfrak{gl}(V)$ where $V:=\mathbb C{m|2n}$. Furthermore, let $W$ be the $\mathfrak g$-module defined by $W:=V\otimes V*$ in the former case and $W:=\mathcal S2(V)$ in the latter case. Associated to $(\mathfrak g,W)$ there exists a distinguished basis of Capelli operators $\left{D\lambda\right}_{\lambda\in\Omega}$, naturally indexed by a set of hook partitions $\Omega$, for the subalgebra of $\mathfrak g$-invariants in the superalgebra $\mathcal{PD}(W)$ of superdifferential operators on $W$. Let $\mathfrak b$ be a Borel subalgebra of $\mathfrak g$. We compute eigenvalues of the $D\lambda$ on the irreducible $\mathfrak g$-submodules of $\mathcal{P}(W)$ and obtain them explicitly as the evaluation of the interpolation super Jack polynomials of Sergeev--Veselov at suitable affine functions of the $\mathfrak b$-highest weight. While the former case is straightforward, the latter is significantly more complex. This generalizes a result by Sahi, Salmasian and Serganova for these cases, where such formulas were given for a fixed choice of Borel subalgebra.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. Mengyuan Cao. The Refined Solution to the Capelli Eigenvalue Problem for 𝔤⁢𝔩⁢(m|n)⊕𝔤⁢𝔩⁢(m|n)direct-sum𝔤𝔩conditional𝑚𝑛𝔤𝔩conditional𝑚𝑛\mathfrak{gl}(m|n)\oplus\mathfrak{gl}(m|n)fraktur_g fraktur_l ( italic_m | italic_n ) ⊕ fraktur_g fraktur_l ( italic_m | italic_n ) and 𝔤⁢𝔩⁢(m|2⁢n)𝔤𝔩conditional𝑚2𝑛\mathfrak{gl}(m|2n)fraktur_g fraktur_l ( italic_m | 2 italic_n ). PhD thesis, University of Ottawa, 2022.
  2. Dualities and representations of Lie superalgebras. American Mathematical Society, 2013.
  3. The Capelli identity, tube domains, and the generalized Laplace transform. Advances in Mathematics, 87(1):71–92, 1991.
  4. Jordan algebras and Capelli identities. Inventiones Mathematicae, 112(1):657–664, 1993.
  5. F. Knop and S. Sahi. Difference equations and symmetric polynomials defined by their zeros. International Mathematics Research Notices, 1996:473–486, 1996.
  6. Shifted Jack polynomials, binomial formula, and applications. Mathematical Research Letters, 4(1):67–78, 1997.
  7. Siddhartha Sahi. The spectrum of certain invariant differential operators associated to a hermitian symmetric space. Lie Theory and Geometry, page 569–576, 1994.
  8. The Capelli Eigenvalue Problem for Lie superalgebras. Mathematische Zeitschrift, 2020.
  9. Generalised discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomials. Advances in Mathematics, 192:341–375, 2005.
  10. Orbits and invariants of super Weyl groupoid. Int. Math. Res. Not. IMRN 2017, no. 20, 6149–6167.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com