Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measurement-induced phase transitions in the toric code (2307.02292v2)

Published 5 Jul 2023 in quant-ph and cond-mat.stat-mech

Abstract: We show how distinct phases of matter can be generated by performing random single-qubit measurements on a subsystem of toric code. Using a parton construction, such measurements map to random Gaussian tensor networks, and in particular, random Pauli measurements map to a classical loop model in which watermelon correlators precisely determine measurement-induced entanglement. Measuring all but a 1d boundary of qubits realizes hybrid circuits involving unitary gates and projective measurements in 1+1 dimensions. We find that varying the probabilities of different Pauli measurements can drive transitions in the un-measured boundary between phases with different orders and entanglement scaling, corresponding to short and long loop phases in the classical model. Furthermore, by utilizing single-site boundary unitaries conditioned on the bulk measurement outcomes, we generate mixed state ordered phases and transitions that can be experimentally diagnosed via linear observables. This demonstrates how parton constructions provide a natural framework for measurement-based quantum computing setups to produce and manipulate phases of matter.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. D. Aharonov, Quantum to classical phase transition in noisy quantum computers, Phys. Rev. A 62, 062311 (2000).
  2. Y. Li, X. Chen, and M. P. A. Fisher, Quantum zeno effect and the many-body entanglement transition, Phys. Rev. B 98, 205136 (2018).
  3. B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9, 031009 (2019a).
  4. Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven entanglement transition in hybrid quantum circuits, Phys. Rev. B 100, 134306 (2019).
  5. M. J. Gullans and D. A. Huse, Dynamical purification phase transition induced by quantum measurements, Phys. Rev. X 10, 041020 (2020).
  6. Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101, 104301 (2020).
  7. A. C. Potter and R. Vasseur, Entanglement dynamics in hybrid quantum circuits, in Entanglement in Spin Chains: From Theory to Quantum Technology Applications, edited by A. Bayat, S. Bose, and H. Johannesson (Springer International Publishing, Cham, 2022) pp. 211–249.
  8. S. Sang and T. H. Hsieh, Measurement-protected quantum phases, Physical Review Research 3, 10.1103/physrevresearch.3.023200 (2021).
  9. A. Lavasani, Y. Alavirad, and M. Barkeshli, Measurement-induced topological entanglement transitions in symmetric random quantum circuits, Nature Phys. 17, 342 (2021), arXiv:2004.07243 [quant-ph] .
  10. A. Lavasani, Z.-X. Luo, and S. Vijay, Monitored quantum dynamics and the kitaev spin liquid, arXiv preprint arXiv:2207.02877  (2022).
  11. R. Raussendorf, D. E. Browne, and H. J. Briegel, Measurement-based quantum computation with cluster states, Physical Review A 68, 022312 (2003), arXiv:quant-ph/0301052.
  12. A. Kitaev, Fault-tolerant quantum computation by anyons (1997).
  13. H. Liu, T. Zhou, and X. Chen, Measurement-induced entanglement transition in a two-dimensional shallow circuit, Phys. Rev. B 106, 144311 (2022a).
  14. J. Merritt and L. Fidkowski, Entanglement transitions with free fermions, Physical Review B 107, 10.1103/physrevb.107.064303 (2023).
  15. X.-G. Wen, Quantum Orders in an Exact Soluble Model (PhysRevLett.90.016803, 2003).
  16. A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321, 2 (2006).
  17. D. Gottesman, The heisenberg representation of quantum computers, arXiv preprint quant-ph/9807006  (1998).
  18. S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Physical Review A 70, 052328 (2004).
  19. S. Bravyi and R. Raussendorf, Measurement-based quantum computation with the toric code states, Physical Review A 76, 10.1103/physreva.76.022304 (2007).
  20. T. H. Hsieh and G. B. Halász, Fractons from partons, Phys. Rev. B 96, 165105 (2017).
  21. G. B. Halász, T. H. Hsieh, and L. Balents, Fracton topological phases from strongly coupled spin chains, Phys. Rev. Lett. 119, 257202 (2017).
  22. B. Skinner, J. Ruhman, and A. Nahum, Measurement–Induced Phase Transitions in the Dynamics of Entanglement (PhysRevX.9.031009, 2019).
  23. H. Liu, T. Zhou, and X. Chen, Measurement-induced entanglement transition in a two-dimensional shallow circuit (PhysRevB.106.144311, 2022).
  24. M. Buchhold, T. Mueller, and S. Diehl, Revealing measurement-induced phase transitions by pre-selection, arXiv preprint arXiv:2208.10506  (2022).
  25. A. J. Friedman, O. Hart, and R. Nandkishore, Measurement-induced phases of matter require adaptive dynamics, arXiv preprint arXiv:2210.07256  (2022).
  26. A. G. Fowler, A. M. Stephens, and P. Groszkowski, High-threshold universal quantum computation on the surface code, Physical Review A 80, 10.1103/physreva.80.052312 (2009).
  27. M. B. Hastings and J. Haah, Dynamically generated logical qubits, Quantum 5, 564 (2021).
  28. S. Bravyi, Lagrangian representation for fermionic linear optics (2004), arXiv:quant-ph/0404180 [quant-ph] .
Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com