Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Remote Sensing Image Change Detection with Graph Interaction (2307.02007v1)

Published 5 Jul 2023 in cs.CV and cs.IR

Abstract: Modern remote sensing image change detection has witnessed substantial advancements by harnessing the potent feature extraction capabilities of CNNs and Transforms.Yet,prevailing change detection techniques consistently prioritize extracting semantic features related to significant alterations,overlooking the viability of directly interacting with bitemporal image features.In this letter,we propose a bitemporal image graph Interaction network for remote sensing change detection,namely BGINet-CD. More specifically,by leveraging the concept of non-local operations and mapping the features obtained from the backbone network to the graph structure space,we propose a unified self-focus mechanism for bitemporal images.This approach enhances the information coupling between the two temporal images while effectively suppressing task-irrelevant interference,Based on a streamlined backbone architecture,namely ResNet18,our model demonstrates superior performance compared to other state-of-the-art methods (SOTA) on the GZ CD dataset. Moreover,the model exhibits an enhanced trade-off between accuracy and computational efficiency,further improving its overall effectiveness

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. M. Liu, Z. Chai, H. Deng, and R. Liu, “A cnn-transformer network with multiscale context aggregation for fine-grained cropland change detection,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 4297–4306, 2022, doi:10.1109/JSTARS.2022.3177235.
  2. H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection with transformers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022, doi:10.1109/TGRS.2021.3095166.
  3. T. Celik, “Unsupervised change detection in satellite images using principal component analysis and k𝑘kitalic_k-means clustering,” IEEE Geoscience and Remote Sensing Letters, vol. 6, no. 4, pp. 772–776, 2009, doi:10.1109/LGRS.2009.2025059.
  4. N. Zerrouki, F. Harrou, and Y. Sun, “Statistical monitoring of changes to land cover,” IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 6, pp. 927–931, 2018, doi:10.1109/LGRS.2018.2817522.
  5. S. Fang, K. Li, J. Shao, and Z. Li, “Snunet-cd: A densely connected siamese network for change detection of vhr images,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022, doi:10.1109/LGRS.2021.3056416.
  6. H. Chen, F. Pu, R. Yang, R. Tang, and X. Xu, “Rdp-net: Region detail preserving network for change detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–10, 2022, doi:10.1109/TGRS.2022.3227098.
  7. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.
  8. S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention module,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3–19.
  9. A. Abuelgasim, W. Ross, S. Gopal, and C. Woodcock, “Change detection using adaptive fuzzy neural networks: Environmental damage assessment after the gulf war,” Remote Sensing of Environment, 1999.
  10. A. Frick and S. Tervooren, “A framework for the long-term monitoring of urban green volume based on multi-temporal and multi-sensoral remote sensing data,” Journal of geovisualization and spatial analysis, vol. 3, no. 1, p. 6, 2019.
  11. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  12. Y. Feng, J. Jiang, H. Xu, and J. Zheng, “Change detection on remote sensing images using dual-branch multilevel intertemporal network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–15, 2023.
  13. Y. Li and A. Gupta, “Beyond grids: Learning graph representations for visual recognition,” in Neural Information Processing Systems, 2018.
  14. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  15. S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set,” IEEE Transactions on geoscience and remote sensing, vol. 57, no. 1, pp. 574–586, 2018.
  16. D. Peng, L. Bruzzone, Y. Zhang, H. Guan, H. Ding, and X. Huang, “Semicdnet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 7, pp. 5891–5906, 2021, doi:10.1109/TGRS.2020.3011913.
  17. H. Chen and Z. Shi, “A spatial-temporal attention-based method and a new dataset for remote sensing image change detection,” Remote Sensing, vol. 12, no. 10, 2020, doi:10.3390/rs12101662. [Online]. Available: https://www.mdpi.com/2072-4292/12/10/1662
  18. R. Caye Daudt, B. Le Saux, and A. Boulch, “Fully convolutional siamese networks for change detection,” in 2018 25th IEEE International Conference on Image Processing (ICIP), 2018, pp. 4063–4067, doi:10.1109/ICIP.2018.8451652.
Citations (1)

Summary

We haven't generated a summary for this paper yet.