Learning ECG Signal Features Without Backpropagation Using Linear Laws (2307.01930v2)
Abstract: This paper introduces LLT-ECG, a novel method for electrocardiogram (ECG) signal classification that leverages concepts from theoretical physics to automatically generate features from time series data. Unlike traditional deep learning approaches, LLT-ECG operates in a forward manner, eliminating the need for backpropagation and hyperparameter tuning. By identifying linear laws that capture shared patterns within specific classes, the proposed method constructs a compact and verifiable representation, enhancing the effectiveness of downstream classifiers. We demonstrate LLT-ECG's state-of-the-art performance on real-world ECG datasets from PhysioNet, underscoring its potential for medical applications where speed and verifiability are crucial.
- doi:10.1109/TPAMI.2013.50.
- doi:10.1186/s40537-021-00419-9. URL https://doi.org/10.1186/s40537-021-00419-9
- doi:10.1109/TASL.2011.2134090.
- doi:10.1109/MSP.2012.2205597.
- doi:10.48550/ARXIV.2010.13482. URL https://arxiv.org/abs/2010.13482
- doi:10.1088/1367-2630/ac7c2d. URL https://dx.doi.org/10.1088/1367-2630/ac7c2d
- doi:10.1098/rsif.2017.0821. URL https://doi.org/10.1098/rsif.2017.0821
- doi:https://doi.org/10.1016/j.cmpb.2015.12.008. URL https://www.sciencedirect.com/science/article/pii/S0169260715003314
- doi:10.3390/s20061796. URL https://www.mdpi.com/1424-8220/20/6/1796
- doi:10.1109/TBME.2015.2468589.
- arXiv:https://doi.org/10.1142/S0129065721500544, doi:10.1142/S0129065721500544. URL https://doi.org/10.1142/S0129065721500544
- doi:10.1109/TBME.2011.2113395.
- doi:10.1109/TBME.2004.827359.
- doi:https://doi.org/10.1016/j.medengphy.2007.02.003. URL https://www.sciencedirect.com/science/article/pii/S1350453307000355
- doi:10.1109/78.934135.
- doi:10.1088/0967-3334/26/5/R01.
- doi:10.1109/TSP.2019.2961234.
- doi:https://doi.org/10.1016/j.bspc.2020.102034. URL https://www.sciencedirect.com/science/article/pii/S1746809420301907
- doi:10.1155/2007/74580. URL https://doi.org/10.1155/2007/74580
- doi:https://doi.org/10.1007/s00521-008-0195-1.
- A. Jakovac, Time series analysis with dynamic law exploration (2021). doi:10.48550/ARXIV.2104.10970. URL https://arxiv.org/abs/2104.10970
- doi:10.1103/PhysRevLett.45.712. URL https://link.aps.org/doi/10.1103/PhysRevLett.45.712
- doi:10.1109/51.932724.
- doi:10.1016/b978-0-12-815368-0.00007-5. URL https://doi.org/10.1016/b978-0-12-815368-0.00007-5