Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning ECG Signal Features Without Backpropagation Using Linear Laws (2307.01930v2)

Published 4 Jul 2023 in cs.LG, cs.AI, cs.CV, stat.AP, and stat.ML

Abstract: This paper introduces LLT-ECG, a novel method for electrocardiogram (ECG) signal classification that leverages concepts from theoretical physics to automatically generate features from time series data. Unlike traditional deep learning approaches, LLT-ECG operates in a forward manner, eliminating the need for backpropagation and hyperparameter tuning. By identifying linear laws that capture shared patterns within specific classes, the proposed method constructs a compact and verifiable representation, enhancing the effectiveness of downstream classifiers. We demonstrate LLT-ECG's state-of-the-art performance on real-world ECG datasets from PhysioNet, underscoring its potential for medical applications where speed and verifiability are crucial.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. doi:10.1109/TPAMI.2013.50.
  2. doi:10.1186/s40537-021-00419-9. URL https://doi.org/10.1186/s40537-021-00419-9
  3. doi:10.1109/TASL.2011.2134090.
  4. doi:10.1109/MSP.2012.2205597.
  5. doi:10.48550/ARXIV.2010.13482. URL https://arxiv.org/abs/2010.13482
  6. doi:10.1088/1367-2630/ac7c2d. URL https://dx.doi.org/10.1088/1367-2630/ac7c2d
  7. doi:10.1098/rsif.2017.0821. URL https://doi.org/10.1098/rsif.2017.0821
  8. doi:https://doi.org/10.1016/j.cmpb.2015.12.008. URL https://www.sciencedirect.com/science/article/pii/S0169260715003314
  9. doi:10.3390/s20061796. URL https://www.mdpi.com/1424-8220/20/6/1796
  10. doi:10.1109/TBME.2015.2468589.
  11. arXiv:https://doi.org/10.1142/S0129065721500544, doi:10.1142/S0129065721500544. URL https://doi.org/10.1142/S0129065721500544
  12. doi:10.1109/TBME.2011.2113395.
  13. doi:10.1109/TBME.2004.827359.
  14. doi:https://doi.org/10.1016/j.medengphy.2007.02.003. URL https://www.sciencedirect.com/science/article/pii/S1350453307000355
  15. doi:10.1109/78.934135.
  16. doi:10.1088/0967-3334/26/5/R01.
  17. doi:10.1109/TSP.2019.2961234.
  18. doi:https://doi.org/10.1016/j.bspc.2020.102034. URL https://www.sciencedirect.com/science/article/pii/S1746809420301907
  19. doi:10.1155/2007/74580. URL https://doi.org/10.1155/2007/74580
  20. doi:https://doi.org/10.1007/s00521-008-0195-1.
  21. A. Jakovac, Time series analysis with dynamic law exploration (2021). doi:10.48550/ARXIV.2104.10970. URL https://arxiv.org/abs/2104.10970
  22. doi:10.1103/PhysRevLett.45.712. URL https://link.aps.org/doi/10.1103/PhysRevLett.45.712
  23. doi:10.1109/51.932724.
  24. doi:10.1016/b978-0-12-815368-0.00007-5. URL https://doi.org/10.1016/b978-0-12-815368-0.00007-5

Summary

We haven't generated a summary for this paper yet.