Faster Detours in Undirected Graphs (2307.01781v1)
Abstract: The $k$-Detour problem is a basic path-finding problem: given a graph $G$ on $n$ vertices, with specified nodes $s$ and $t$, and a positive integer $k$, the goal is to determine if $G$ has an $st$-path of length exactly $\text{dist}(s, t) + k$, where $\text{dist}(s, t)$ is the length of a shortest path from $s$ to $t$. The $k$-Detour problem is NP-hard when $k$ is part of the input, so researchers have sought efficient parameterized algorithms for this task, running in $f(k)\text{poly}(n)$ time, for $f$ as slow-growing as possible. We present faster algorithms for $k$-Detour in undirected graphs, running in $1.853k \text{poly}(n)$ randomized and $4.082k \text{poly}(n)$ deterministic time. The previous fastest algorithms for this problem took $2.746k \text{poly}(n)$ randomized and $6.523k \text{poly}(n)$ deterministic time [Bez\'akov\'a-Curticapean-Dell-Fomin, ICALP 2017]. Our algorithms use the fact that detecting a path of a given length in an undirected graph is easier if we are promised that the path belongs to what we call a "bipartitioned" subgraph, where the nodes are split into two parts and the path must satisfy constraints on those parts. Previously, this idea was used to obtain the fastest known algorithm for finding paths of length $k$ in undirected graphs [Bj\"orklund-Husfeldt-Kaski-Koivisto, JCSS 2017]. Our work has direct implications for the $k$-Longest Detour problem: in this problem, we are given the same input as in $k$-Detour, but are now tasked with determining if $G$ has an $st$-path of length at least $\text{dist}(s, t) + k.$ Our results for k-Detour imply that we can solve $k$-Longest Detour in $3.432k \text{poly}(n)$ randomized and $16.661k \text{poly}(n)$ deterministic time. The previous fastest algorithms for this problem took $7.539k \text{poly}(n)$ randomized and $42.549k \text{poly}(n)$ deterministic time [Fomin et al., STACS 2022].
- Finding Detours is Fixed-Parameter Tractable. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics (LIPIcs), pages 54:1–54:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2017/7479, doi:10.4230/LIPIcs.ICALP.2017.54.
- Narrow sieves for parameterized paths and packings. Journal of Computer and System Sciences, 87:119–139, August 2017. doi:10.1016/j.jcss.2017.03.003.
- Directed Hamiltonicity and Out-Branchings via Generalized Laplacians. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics (LIPIcs), pages 91:1–91:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2017/7420, doi:10.4230/LIPIcs.ICALP.2017.91.
- Parameterized Algorithms. Springer International Publishing, 2015. doi:10.1007/978-3-319-21275-3.
- Fast hamiltonicity checking via bases of perfect matchings. Journal of the ACM, 65(3):1–46, March 2018. doi:10.1145/3148227.
- Determinantal sieving, 2023. URL: https://arxiv.org/abs/2304.02091, doi:10.48550/ARXIV.2304.02091.
- Fixed-parameter tractability of maximum colored path and beyond, 2022. arXiv:arXiv:2207.07449.
- Detours in Directed Graphs. In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022), volume 219 of Leibniz International Proceedings in Informatics (LIPIcs), pages 29:1–29:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2022/15839, doi:10.4230/LIPIcs.STACS.2022.29.
- Long directed (s, t)-path: FPT algorithm. Information Processing Letters, 140:8–12, December 2018. doi:10.1016/j.ipl.2018.04.018.
- A survey on graph problems parameterized above and below guaranteed values, 2022. URL: https://arxiv.org/abs/2207.12278, doi:10.48550/ARXIV.2207.12278.
- Simpler and faster algorithms for detours in planar digraphs. In Symposium on Simplicity in Algorithms (SOSA), pages 156–165. Society for Industrial and Applied Mathematics, January 2023. doi:10.1137/1.9781611977585.ch15.
- Which problems have strongly exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, December 2001. doi:10.1006/jcss.2001.1774.
- Long directed detours: Reduction to 2222-disjoint paths, 2023. URL: https://arxiv.org/abs/2301.06105, doi:10.48550/ARXIV.2301.06105.
- Nearly optimal time bounds for kpath in hypergraphs, 2018. URL: https://arxiv.org/abs/1803.04940, doi:10.48550/ARXIV.1803.04940.
- Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Automata, Languages and Programming, 35th International Colloquium, ICALP, volume 5125 of Lecture Notes in Computer Science, pages 575–586. Springer, 2008.
- Limits and applications of group algebras for parameterized problems. ACM Transactions on Algorithms, 12(3):1–18, May 2016. doi:10.1145/2885499.
- Burkhard Monien. How to find long paths efficiently. In North-Holland Mathematics Studies, volume 109, pages 239–254. Elsevier, 1985.
- Jesper Nederlof. Bipartite TSP in o(1.9999n)𝑜superscript1.9999𝑛o(1.9999^{n})italic_o ( 1.9999 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) time, assuming quadratic time matrix multiplication. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. ACM, June 2020. doi:10.1145/3357713.3384264.
- Dekel Tsur. Faster deterministic parameterized algorithm for k-path. Theoretical Computer Science, 790:96–104, October 2019. doi:10.1016/j.tcs.2019.04.024.
- Ryan Williams. Finding paths of length k𝑘kitalic_k in O∗(2k)superscript𝑂∗superscript2𝑘O^{\ast}(2^{k})italic_O start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( 2 start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) time. Inf. Process. Lett., 109(6):315–318, feb 2009. doi:10.1016/j.ipl.2008.11.004.
- Meirav Zehavi. A randomized algorithm for long directed cycle. Information Processing Letters, 116(6):419–422, June 2016. doi:10.1016/j.ipl.2016.02.005.