Immersive Media and Massive Twinning: Advancing Towards the Metaverse (2307.01522v2)
Abstract: The advent of the Metaverse concept has further expedited the evolution of haptic, tactile internet, and multimedia applications with their VR/AR/XR services, and therefore, fully-immersive sensing is most likely to define the next generation of wireless networks as a key to realize the speculative vision of the Metaverse. In this magazine, we articulate different types of media that we envision will be communicated between the cyber and physical twins in the Metaverse. In particular, we explore the advantages grasped by exploiting each kind, and we point out critical challenges pertinent to 3D data processing, coding, transporting, and rendering. We further shed light on the role of future wireless networks in delivering the anticipated quality of immersion through the reliable streaming of multimedia signals between the digital twin and its physical counterpart. Specifically, we explore emergent communication paradigms, including semantic, holographic, and goal-oriented communication, which we expect to realize energy and spectrally efficient Metaverse while ensuring ultra-low latency.
- L. Bariah and M. Debbah, “The interplay of AI and digital twin: Bridging the gap between data-driven and model-driven approaches,” arXiv preprint arXiv:2209.12423, 2022.
- L.-H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin, A. Kumar, C. Bermejo, and P. Hui, “All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda,” arXiv preprint arXiv:2110.05352, 2021.
- Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen, “A survey on metaverse: Fundamentals, security, and privacy,” IEEE Communications Surveys & Tutorials, 2022.
- M. Xu, W. C. Ng, W. Y. B. Lim, J. Kang, Z. Xiong, D. Niyato, Q. Yang, X. S. Shen, and C. Miao, “A full dive into realizing the edge-enabled metaverse: Visions, enabling technologies, and challenges,” IEEE Communications Surveys & Tutorials, 2022.
- Y. K. Dwivedi, L. Hughes, A. M. Baabdullah, S. Ribeiro-Navarrete, M. Giannakis, M. M. Al-Debei, D. Dennehy, B. Metri, D. Buhalis, C. M. Cheung et al., “Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy,” International Journal of Information Management, vol. 66, p. 102542, 2022.
- Q. Yang, Y. Zhao, H. Huang, Z. Xiong, J. Kang, and Z. Zheng, “Fusing blockchain and AI with metaverse: A survey,” IEEE Open Journal of the Computer Society, vol. 3, pp. 122–136, 2022.
- L. U. Khan, Z. Han, D. Niyato, E. Hossain, and C. S. Hong, “Metaverse for wireless systems: Vision, enablers, architecture, and future directions,” arXiv preprint arXiv:2207.00413, 2022.
- F. Tang, X. Chen, M. Zhao, and N. Kato, “The roadmap of communication and networking in 6g for the metaverse,” IEEE Wireless Communications, pp. 1–15, 2022.
- Y. Wang and J. Zhao, “Mobile edge computing, metaverse, 6G wireless communications, artificial intelligence, and blockchain: Survey and their convergence,” arXiv preprint arXiv:2209.14147, 2022.
- E. Kuzyakov and D. Pio, “Next-generation video encoding techniques for 360 video and vr,” 2016. [Online]. Available: https://engineering.fb.com/2016/01/21/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/
- M. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hedman, M. Duvall, J. Dourgarian, J. Busch, M. Whalen, and P. Debevec, “Immersive light field video with a layered mesh representation,” ACM Trans. Graph., vol. 39, no. 4, aug 2020.
- G. Tech, Y. Chen, K. Müller, J.-R. Ohm, A. Vetro, and Y.-K. Wang, “Overview of the multiview and 3d extensions of high efficiency video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 1, pp. 35–49, 2016.
- L. Ilola, L. Kondrad, S. Schwarz, and A. Hamza, “An overview of the mpeg standard for storage and transport of visual volumetric video-based coding,” Frontiers in Signal Processing, vol. 2, 2022.
- J. M. Boyce, R. Doré, A. Dziembowski, J. Fleureau, J. Jung, B. Kroon, B. Salahieh, V. K. M. Vadakital, and L. Yu, “Mpeg immersive video coding standard,” Proceedings of the IEEE, vol. 109, no. 9, pp. 1521–1536, 2021.
- S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li, J. Llach, K. Mammou, R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A. M. Tourapis, and V. Zakharchenko, “Emerging mpeg standards for point cloud compression,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 1, pp. 133–148, 2019.
- M. M. Hannuksela and Y.-K. Wang, “An overview of omnidirectional media format (omaf),” Proceedings of the IEEE, vol. 109, no. 9, pp. 1590–1606, 2021.
- B. Sredojev, D. Samardzija, and D. Posarac, “Webrtc technology overview and signaling solution design and implementation,” in 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2015, pp. 1006–1009.
- M. A. Uusitalo et al., “6G vision, value, use cases and technologies from european 6G flagship project Hexa-X,” IEEE Access, vol. 9, pp. 160 004–160 020, 2021.
- L. Bariah and M. Debbah, “Ai embodiment through 6G: Shaping the future of AGI,” Authorea Preprints, 2023.
- E. C. Strinati and S. Barbarossa, “6G networks: Beyond shannon towards semantic and goal-oriented communications,” Computer Networks, vol. 190, p. 107930, 2021.
- C. Zhang, H. Zou, S. Lasaulce, W. Saad, M. Kountouris, and M. Bennis, “Goal-oriented communications for the IoT and application to data compression,” arXiv preprint arXiv:2211.05378, 2022.
- C. Chaccour, W. Saad, M. Debbah, Z. Han, and H. V. Poor, “Less data, more knowledge: Building next generation semantic communication networks,” arXiv preprint arXiv:2211.14343, 2022.
- A. Li, X. Wei, D. Wu, and L. Zhou, “Cross-modal semantic communications,” IEEE Wireless Commun., 2022.
- S. Seo, J. Park, S.-W. Ko, J. Choi, M. Bennis, and S.-L. Kim, “Towards semantic communication protocols: A probabilistic logic perspective,” arXiv preprint arXiv:2207.03920, 2022.
- J. Hoydis, F. A. Aoudia, A. Valcarce, and H. Viswanathan, “Toward a 6G AI-native air interface,” IEEE Commun. Mag., vol. 59, no. 5, pp. 76–81, 2021.
- R. Petkova, V. Poulkov, A. Manolova, and K. Tonchev, “Challenges in implementing low-latency holographic-type communication systems,” Sensors, vol. 22, no. 24, p. 9617, 2022.
- Ericsson. Ericsson holographic communication. [Online]. Available: https://www.ericsson.com/en/ericsson-one/holographic-communication
- A. Clemm, M. T. Vega, H. K. Ravuri, T. Wauters, and F. De Turck, “Toward truly immersive holographic-type communication: Challenges and solutions,” IEEE Commun. Mag., vol. 58, no. 1, pp. 93–99, 2020.
- K. Mammou, J. Kim, A. M. Tourapis, D. Podborski, and D. Flynn, “Video and subdivision based mesh coding,” in 2022 10th European Workshop on Visual Information Processing (EUVIP), 2022, pp. 1–6.
- B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Cham: Springer International Publishing, 2020, pp. 405–421.