Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Optimal Multiple-Class Encoding Scheme for a Graph of Bounded Hadwiger Number (2307.01500v1)

Published 4 Jul 2023 in cs.DS and math.CO

Abstract: Since Jacobson [FOCS89] initiated the investigation of succinct graph encodings 35 years ago, there has been a long list of results on balancing the generality of the class, the speed, the succinctness of the encoding, and the query support. Let Cn denote the set consisting of the graphs in a class C that with at most n vertices. A class C is nontrivial if the information-theoretically min number log |Cn| of bits to distinguish the members of Cn is Omega(n). An encoding scheme based upon a single class C is C-opt if it takes a graph G of Cn and produces in deterministic O(n) time an encoded string of at most log |Cn| + o(log |Cn|) bits from which G can be recovered in O(n) time. Despite the extensive efforts in the literature, trees and general graphs were the only nontrivial classes C admitting C-opt encoding schemes that support the degree query in O(1) time. Basing an encoding scheme upon a single class ignores the possibility of a shorter encoded string using additional properties of the graph input. To leverage the inherent structures of individual graphs, we propose to base an encoding scheme upon of multiple classes: An encoding scheme based upon a family F of classes, accepting all graphs in UF, is F-opt if it is C-opt for each C in F. Having a C-opt encoding scheme for each C in F does not guarantee an F-opt encoding scheme. Under this more stringent criterion, we present an F-opt encoding scheme for a family F of an infinite number of classes such that UF comprises all graphs of bounded Hadwiger numbers. F consists of the nontrivial quasi-monotone classes of k-clique-minor-free graphs for each positive integer k. Our F-opt scheme supports queries of degree, adjacency, neighbor-listing, and bounded-distance shortest path in O(1) time per output. We broaden the graph classes admitting opt encoding schemes that also efficiently support fundamental queries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (86)
  1. Planar separators. SIAM Journal on Discrete Mathematics, 7(2):184–193, 1994. doi:10.1137/S0895480191198768.
  2. Succinct representation of labeled graphs. Algorithmica, 62(1-2):224–257, 2012. doi:10.1007/s00453-010-9452-7.
  3. Compact representations of separable graphs. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 679–688, 2003. http://dl.acm.org/citation.cfm?id=644108.644219.
  4. G. E. Blelloch and A. Farzan. Succinct representations of separable graphs. In A. Amir and L. Parida, editors, Proceedings of the 21st Annual Symposium on Combinatorial Pattern Matching, LNCS 6129, pages 138–150, 2010. doi:10.1007/978-3-642-13509-5_13.
  5. Hadwiger’s conjecture is true for almost every graph. European Journal of Combinatorics, 1(3):195–199, 1980. doi:10.1016/S0195-6698(80)80001-1.
  6. An information-theoretic upper bound on planar graphs using well-orderly maps. In M. Dehmer, F. Emmert-Streib, and A. Mehler, editors, Towards an Information Theory of Complex Networks – Statistical Methods and Applications, pages 17–46. Springer, 2011. doi:10.1007/978-0-8176-4904-3_2.
  7. Coresets for clustering in excluded-minor graphs and beyond. In D. Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, pages 2679–2696, 2021. doi:10.1137/1.9781611976465.159.
  8. Succinct representation of triangulations with a boundary. In F. Dehne, A. López-Ortiz, and J.-R. Sack, editors, Proceedings of the 9th International Workshop on Algorithms and Data Structures, pages 134–145, 2005. doi:10.1007/11534273_13.
  9. Succinct representations of planar maps. Theoretical Computer Science, 408(2-3):174–187, 2008. doi:10.1016/j.tcs.2008.08.016.
  10. Schnyder woods for higher genus triangulated surfaces, with applications to encoding. Discrete & Computational Geometry, 42(3):489–516, 2009. doi:10.1007/s00454-009-9169-z.
  11. Orderly spanning trees with applications. SIAM Journal on Computing, 34(4):924–945, 2005. doi:10.1137/S0097539702411381.
  12. P.-Y. Chuang. Improved compact encoding of rectangular drawings. Master’s thesis, Department of Computer Science and Information Engineering, National Taiwan University, 2008. https://doi.org/10.6342/NTU.2008.02171.
  13. Compact encodings of planar graphs via canonical ordering and multiple parentheses. In K. G. Larsen, S. Skyum, and G. Winskel, editors, Proceedings of the 25th International Colloquium on Automata, Languages, and Programming, LNCS 1443, pages 118–129, Aalborg, Denmark, 1998. doi:10.1007/BFb0055046.
  14. Improved bounds for the excluded-minor approximation of treedepth. SIAM Journal on Discrete Mathematics, 35(2):934–947, 2021. doi:10.1137/19M128819X.
  15. N. Deo and B. Litow. A structural approach to graph compression. In Proceedings of MFCS’98 Satellite Workshop on Communications, pages 91–101, 1998.
  16. Planarization of graphs embedded on surfaces. In Proceedings of the 21st Workshop on Graph-Theoretic Concepts in Computer Science, LNCS 1017, pages 62–72, 1995. doi:10.1007/3-540-60618-1_66.
  17. A linear-time algorithm for finding a complete graph minor in a dense graph. SIAM Journal on Computing, 27(4):1770–1774, 2013. doi:10.1137/120866725.
  18. D. Eppstein. Finding large clique minors is hard. Journal of Graph Algorithms and Applications, 13(2):197–204, 2009. doi:10.7155/jgaa.00185.
  19. Computation of hadwiger number and related contraction problems: Tight lower bounds. ACM Transactions on Computation Theory, 13(2), 2021. doi:10.1145/3448639.
  20. J. Fox and F. Wei. On the number of cliques in graphs with a forbidden minor. Journal of Combinatorial Theory, Series B, 126:175–197, 2017. doi:10.1016/j.jctb.2017.04.004.
  21. Storing a sparse table with O⁢(1)𝑂1O(1)italic_O ( 1 ) worst case access time. Journal of the ACM, 31(3):538–544, 1984. doi:10.1145/828.1884.
  22. Navigating planar topologies in near-optimal space and time. Computational Geometry, 109:101922, 2023. doi:10.1016/j.comgeo.2022.101922.
  23. Succinct encoding of binary strings representing triangulations. Algorithmica, 83(11):3432–3468, 2021. doi:10.1007/s00453-021-00861-4.
  24. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, 1979.
  25. C. Gavoille and N. Hanusse. On compact encoding of pagenumber k𝑘kitalic_k graphs. Discrete Mathematics & Theoretical Computer Science, 10(3):23–34, 2008. doi:10.46298/dmtcs.436.
  26. M. T. Goodrich. Planar separators and parallel polygon triangulation. Journal of Computer and System Sciences, 51(3):374–389, 1995. doi:10.1006/jcss.1995.1076.
  27. M. Grohe. Fixed-point definability and polynomial time on graphs with excluded minors. Journal of the ACM, 59(5):27:1–27:64, 2012. doi:10.1145/2371656.2371662.
  28. Isomorphism testing for graphs excluding small minors. SIAM Journal on Computing, 52(1):238–272, 2023. doi:10.1137/21m1401930.
  29. Automorphism groups of graphs of bounded Hadwiger number. CoRR, 2020. doi:10.48550/arXiv.2012.14300.
  30. H. Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 88(2):133–142, 1943.
  31. F. Harary and E. M. Palmer. Graphical enumeration. Addison-Wesley, 1973.
  32. Linear-time succinct encodings of planar graphs via canonical orderings. SIAM Journal on Discrete Mathematics, 12(3):317–325, 1999. doi:10.1137/S0895480197325031.
  33. A fast general methodology for information-theoretically optimal encodings of graphs. SIAM Journal on Computing, 30(3):838–846, 2000. doi:10.1137/S0097539799359117.
  34. R. Impagliazzo and R. Paturi. Complexity of k𝑘kitalic_k-SAT. Jouranl of Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.
  35. G. Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science, pages 549–554, 1989. doi:10.1109/SFCS.1989.63533.
  36. F. Kammer and J. Meintrup. Space-efficient graph coarsening with applications to succinct planar encodings. In S. W. Bae and H. Park, editors, Proceedings of the 33rd International Symposium on Algorithms and Computation, LIPIcs 248, pages 62:1–62:15, 2022. doi:10.4230/LIPIcs.ISAAC.2022.62.
  37. K. Kawarabayashi and B. A. Reed. A separator theorem in minor-closed classes. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pages 153–162, 2010. doi:10.1109/FOCS.2010.22.
  38. The disjoint paths problem in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012. doi:10.1016/j.jctb.2011.07.004.
  39. K. Keeler and J. Westbrook. Short encodings of planar graphs and maps. Discrete Applied Mathematics, 58(3):239–252, 1995. doi:10.1016/0166-218X(93)E0150-W.
  40. A. V. Kostochka. Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica, 4(4):307–316, 1984. doi:10.1007/BF02579141.
  41. L. Kowalik and M. Kurowski. Oracles for bounded-length shortest paths in planar graphs. ACM Transactions on Algorithms, 2(3):335–363, 2006. doi:10.1145/1159892.1159895.
  42. R. Levi and D. Ron. A quasi-polynomial time partition oracle for graphs with an excluded minor. ACM Transactions on Algorithms, 11(3):24:1–24:13, 2015. doi:10.1145/2629508.
  43. Fixed-parameter tractability of graph isomorphism in graphs with an excluded minor. In S. Leonardi and A. Gupta, editors, Proceedings of the 54th Annual ACM Symposium on Theory of Computing, pages 914–923, 2022. doi:10.1145/3519935.3520076.
  44. L. Lovász. Graph minor theory. Bulletin of the American Mathematical Society, 43(1):75–86, 2006. doi:10.1090/S0273-0979-05-01088-8.
  45. H.-I. Lu. Linear-time compression of bounded-genus graphs into information-theoretically optimal number of bits. SIAM Journal on Computing, 43(2):477–496, 2014. doi:10.1137/120879142.
  46. Balanced parentheses strike back. ACM Transactions on Algorithms, 4(3):28.1–28.13, 2008. doi:10.1145/1367064.1367068.
  47. W. Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Mathematische Annalen, 174(4):265–268, 1967. doi:10.1007/BF01364272.
  48. Compressed representations of graphs. In M.-Y. Kao, editor, Encyclopedia of Algorithms, pages 382–386. Springer, 2016. doi:10.1007/978-1-4939-2864-4_646.
  49. J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees. SIAM Journal on Computing, 31(3):762–776, 2001. doi:10.1137/S0097539799364092.
  50. G. Navarro and K. Sadakane. Compressed tree representations. In M.-Y. Kao, editor, Encyclopedia of Algorithms, pages 397–401. Springer, 2016. doi:10.1007/978-1-4939-2864-4_641.
  51. D. Poulalhon and G. Schaeffer. Optimal coding and sampling of triangulations. Algorithmica, 46(3):505–527, 2006. doi:10.1007/s00453-006-0114-8.
  52. D. Poulalhon and G. Schaeffer. Optimal coding and sampling of triangulations. Algorithmica, 46(3-4):505–527, 2006.
  53. R. Raman. personal communications.
  54. Succinct indexable dictionaries with applications to encoding k𝑘kitalic_k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms, 3(4):43, 2007. doi:10.1145/1290672.1290680.
  55. A linear-time algorithm to find a separator in a graph excluding a minor. ACM Transactions on Algorithms, 5(4):39:1–39:16, 2009. doi:10.1145/1597036.1597043.
  56. N. Robertson and P. D. Seymour. Graph minors. I. excluding a forest. Journal of Combinatorial Theory, Series B, 35(1):39–61, 1983. doi:10.1016/0095-8956(83)90079-5.
  57. N. Robertson and P. D. Seymour. Graph minors. III. planar tree-width. Journal of Combinatorial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.
  58. N. Robertson and P. D. Seymour. Graph minors. II. algorithmic aspects of tree-width. Journal of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.
  59. N. Robertson and P. D. Seymour. Graph minors. V. excluding a planar graph. Journal of Combinatorial Theory, Series B, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.
  60. N. Robertson and P. D. Seymour. Graph minors. VI. disjoint paths across a disc. Journal of Combinatorial Theory, Series B, 41(1):115–138, 1986. doi:10.1016/0095-8956(86)90031-6.
  61. N. Robertson and P. D. Seymour. Graph minors. VII. disjoint paths on a surface. Journal of Combinatorial Theory, Series B, 45(2):212–254, 1988. doi:10.1016/0095-8956(88)90070-6.
  62. N. Robertson and P. D. Seymour. Graph minors. IV. tree-width and well-quasi-ordering. Journal of Combinatorial Theory, Series B, 48(2):227–254, 1990. doi:10.1016/0095-8956(90)90120-O.
  63. N. Robertson and P. D. Seymour. Graph minors. IX. disjoint crossed paths. Journal of Combinatorial Theory, Series B, 49(1):40–77, 1990. doi:10.1016/0095-8956(90)90063-6.
  64. N. Robertson and P. D. Seymour. Graph minors. VIII. a Kuratowski theorem for general surfaces. Journal of Combinatorial Theory, Series B, 48(2):255–288, 1990. doi:10.1016/0095-8956(90)90121-F.
  65. N. Robertson and P. D. Seymour. Graph minors. X. obstructions to tree-decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)90061-N.
  66. N. Robertson and P. D. Seymour. Graph minors. XI. circuits on a surface. Journal of Combinatorial Theory, Series B, 60(1):72–106, 1994. doi:10.1006/jctb.1994.1007.
  67. N. Robertson and P. D. Seymour. Graph minors. XII. distance on a surface. Journal of Combinatorial Theory, Series B, 64(2):240–272, 1995. doi:10.1006/jctb.1995.1034.
  68. N. Robertson and P. D. Seymour. Graph minors. XIII. the disjoint paths problem. Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.
  69. N. Robertson and P. D. Seymour. Graph minors. XIV. extending an embedding. Journal of Combinatorial Theory, Series B, 65(1):23–50, 1995. doi:10.1006/jctb.1995.1042.
  70. N. Robertson and P. D. Seymour. Graph minors. XV. giant steps. Journal of Combinatorial Theory, Series B, 68(1):112–148, 1996. doi:10.1006/jctb.1996.0059.
  71. N. Robertson and P. D. Seymour. Graph minors. XVII. taming a vortex. Journal of Combinatorial Theory, Series B, 77(1):162–210, 1999. doi:10.1006/jctb.1999.1919.
  72. N. Robertson and P. D. Seymour. Graph minors. XVI. excluding a non-planar graph. Journal of Combinatorial Theory, Series B, 89(1):43–76, 2003. doi:10.1016/S0095-8956(03)00042-X.
  73. N. Robertson and P. D. Seymour. Graph minors. XVIII. tree-decompositions and well-quasi-ordering. Journal of Combinatorial Theory, Series B, 89(1):77–108, 2003. doi:10.1016/S0095-8956(03)00067-4.
  74. N. Robertson and P. D. Seymour. Graph minors. XIX. well-quasi-ordering on a surface. Journal of Combinatorial Theory, Series B, 90(2):325–385, 2004. doi:10.1016/j.jctb.2003.08.005.
  75. N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.
  76. N. Robertson and P. D. Seymour. Graph minors. XXI. graphs with unique linkages. Journal of Combinatorial Theory, Series B, 99(3):583–616, 2009. doi:10.1016/j.jctb.2008.08.003.
  77. N. Robertson and P. D. Seymour. Graph minors. XXIII. Nash-Williams’ immersion conjecture. Journal of Combinatorial Theory, Series B, 100(2):181–205, 2010. doi:10.1016/j.jctb.2009.07.003.
  78. N. Robertson and P. D. Seymour. Graph minors. XXII. irrelevant vertices in linkage problems. Journal of Combinatorial Theory, Series B, 102(2):530–563, 2012. doi:10.1016/j.jctb.2007.12.007.
  79. P. Seymour. Hadwiger’s conjecture. In J. F. Nash, Jr. and M. T. Rassias, editors, Open Problems in Mathematics, pages 417–437. Springer International Publishing, 2016. doi:10.1007/978-3-319-32162-2_13.
  80. A. Thomason. The extremal function for complete minors. Journal of Combinatorial Theory, Series B, 81(2):318–338, 2001. doi:10.1006/jctb.2000.2013.
  81. G. Turán. On the succinct representation of graphs. Discrete Applied Mathematics, 8(3):289–294, 1984. doi:10.1016/0166-218X(84)90126-4.
  82. W. T. Tutte. A census of planar triangulations. Canadian Journal of Mathematics, 14:21–38, 1962. doi:10.4153/CJM-1962-002-9.
  83. K. Wagner. Graphentheorie. B. I. Hochschultaschenbücher, Band 248/248a*. Bibliographisches Institut, Mannheim-Vienna-Zürich, 1970.
  84. C. Wulff-Nilsen. Separator theorems for minor-free and shallow minor-free graphs with applications. In R. Ostrovsky, editor, Proceedings of the IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 37–46, 2011. doi:10.1109/FOCS.2011.15.
  85. K. Yamanaka and S.-I. Nakano. Coding floorplans with fewer bits. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E89-A(5):1181–1185, 2006. doi:10.1093/ietfec/e89-a.5.1181.
  86. K. Yamanaka and S.-I. Nakano. A compact encoding of plane triangulations with efficient query supports. Information Processing Letters, 110(18-19):803–809, 2010. doi:10.1016/j.ipl.2010.06.014.
Citations (2)

Summary

We haven't generated a summary for this paper yet.