Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scrutinizing the Primordial Black Holes Interpretation of PTA Gravitational Waves and JWST Early Galaxies (2307.01457v2)

Published 4 Jul 2023 in astro-ph.CO and hep-ph

Abstract: Recent observations have granted to us two unique insights into the early universe: the presence of a low-frequency stochastic gravitational wave background detected by the NANOGrav and Pulsar Timing Array (PTA) experiments and the emergence of unusually massive galaxy candidates at high redshifts reported by the James Webb Space Telescope (JWST). In this letter, we consider the possibility that both observations have a common origin, namely primordial black holes (PBHs) in the mass range between $10{6}~M_{\odot}$ and $10{13}~M_{\odot}$. While superheavy PBHs act as seeds for accelerated galaxy formation capable of explaining the JWST extreme galaxies, they can also form binary mergers that source gravitational waves which can be potentially identified as the PTA signal. The analysis is performed taking into account the constraints on the relevant region of the PBH parameter space including the novel bound imposed by the Ultraviolet Luminosity Function of galaxies observed by the Hubble Space Telescope. We conclude that PTA's and JWST's interpretations in terms of PBH binary mergers and Poissonian gas of PBHs, respectively, are strongly excluded.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. J. Antoniadis et al. arXiv:2306.16214.
  2. P. Parashari and R. Laha arXiv:2305.00999.
  3. S. Hawking Mon. Not. Roy. Astron. Soc. 152 (1971) 75.
  4. B. J. Carr and S. W. Hawking Mon. Not. Roy. Astron. Soc. 168 (1974) 399–415.
  5. P. Meszaros Astron. Astrophys. 37 (1974) 225–228.
  6. B. J. Carr Astrophys. J. 201 (1975) 1–19.
  7. G. F. Chapline Nature 253 (1975), no. 5489 251–252.
  8. H. Mouri and Y. Taniguchi Astrophys. J. Lett. 566 (2002) L17–L20, [astro-ph/0201102].
  9. K. Jedamzik JCAP 09 (2020) 022, [arXiv:2006.11172].
  10. L. Ferrarese and H. Ford Space Sci. Rev. 116 (2005) 523–624, [astro-ph/0411247].
  11. K. Gultekin et al. Astrophys. J. 698 (2009) 198–221, [arXiv:0903.4897].
  12. J. Kormendy and L. C. Ho Ann. Rev. Astron. Astrophys. 51 (2013) 511–653, [arXiv:1304.7762].
  13. R. Bean and J. Magueijo Phys. Rev. D 66 (2002) 063505, [astro-ph/0204486].
  14. S. Clesse and J. García-Bellido Phys. Dark Univ. 15 (2017) 142–147, [arXiv:1603.05234].
  15. S. Clesse and J. García-Bellido Phys. Dark Univ. 22 (2018) 137–146, [arXiv:1711.10458].
  16. P. C. Peters and J. Mathews Phys. Rev. 131 (1963) 435–439.
  17. LIGO Scientific Collaboration and Virgo Collaboration Collaboration Phys. Rev. Lett. 116 (Mar, 2016) 131102.
  18. S. R. Taylor arXiv:2105.13270.
  19. M. Maggiore, Gravitational Waves. Vol. 2: Astrophysics and Cosmology. Oxford University Press, 3, 2018.
  20. Y. Gouttenoire and E. Vitagliano arXiv:2306.17841.
  21. J. A. Ellis, M. Vallisneri, S. R. Taylor, and P. T. Baker, “Enterprise: Enhanced numerical toolbox enabling a robust pulsar inference suite.” Zenodo, Sept., 2020.
  22. v2.3.3.
  23. A. Lewis arXiv:1910.13970.
  24. W. H. Press and P. Schechter Astrophys. J. 187 (1974) 425–438.
  25. R. K. Sheth and G. Tormen Mon. Not. Roy. Astron. Soc. 308 (1999) 119, [astro-ph/9901122].
  26. J. Silk Astrophys. J. 151 (1968) 459–471.
  27. S. W. Hawking Phys. Lett. B 231 (1989) 237–239.
  28. J. Garriga and A. Vilenkin Phys. Rev. D 47 (1993) 3265–3274, [hep-ph/9208212].
  29. H. Deng and A. Vilenkin JCAP 12 (2017) 044, [arXiv:1710.02865].
  30. N. Kitajima and F. Takahashi JCAP 11 (2020) 060, [arXiv:2006.13137].
  31. K. Kawana and K.-P. Xie Phys. Lett. B 824 (2022) 136791, [arXiv:2106.00111].
  32. M. Sahlén and E. Zackrisson arXiv:2105.05098.
  33. B. J. Carr and M. Sakellariadou Astrophys. J. 516 (1999) 195–220.
  34. Y. Inoue and A. Kusenko JCAP 10 (2017) 034, [arXiv:1705.00791].
  35. J. Silk Astrophys. J. 211 (1977) 638–648.
  36. Y. Gouttenoire and T. Volansky arXiv:2305.04942.
  37. NANOGrav Collaboration, G. Agazie et al. arXiv:2306.16220.
  38. NANOGrav Collaboration, G. Agazie et al. arXiv:2306.16221.
  39. A. Ghoshal and A. Strumia arXiv:2306.17158.
  40. S. Young and C. T. Byrnes JCAP 08 (2013) 052, [arXiv:1307.4995].
  41. P. C. Peters Phys. Rev. 136 (Nov, 1964) B1224–B1232.
  42. P. Ajith et al. Phys. Rev. Lett. 106 (2011) 241101, [arXiv:0909.2867].
Citations (28)

Summary

We haven't generated a summary for this paper yet.