Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Primitive Automata that are Synchronizing (2307.01302v1)

Published 3 Jul 2023 in cs.FL

Abstract: A deterministic finite (semi)automaton is primitive if its transition monoid (semigroup) acting on the set of states has no non-trivial congruences. It is synchronizing if it contains a constant map (transformation). In analogy to synchronizing groups, we study the possibility of characterizing automata that are synchronizing if primitive. We prove that the implication holds for several classes of automata. In particular, we show it for automata whose every letter induce either a permutation or a semiconstant transformation (an idempotent with one point of contraction) unless all letters are of the first type. We propose and discuss two conjectures about possible more general characterizations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. J. Almeida and E. Rodaro. Semisimple Synchronizing Automata and the Wedderburn-Artin Theory. International Journal of Foundations of Computer Science, 27(02):127–145, 2016.
  2. Primitive groups, graph endomorphisms and synchronization. Proceedings of the London Mathematical Society, 113(6):829–867, 2016.
  3. Between primitive and 2-transitive: Synchronization and its friends. EMS Surv. Math. Sci, 4(2):101–184, 2017.
  4. F. Arnold and S. Steinberg. Synchronizing groups and automata. Theoretical Computer Science, 359(1):101–110, 2006.
  5. General Algebra, volume 2. Nauka, Moscow, 1991. In Russian.
  6. Algebraic Combinatorics. De Gruyter, 2021.
  7. Synchronizing Strongly Connected Partial DFAs. In STACS, volume 187 of LIPIcs, pages 12:1–12:16. Schloss Dagstuhl, 2021.
  8. M. V. Berlinkov and C. Nicaud. Synchronizing Almost-Group Automata. International Journal of Foundations of Computer Science, 31(08):1091–1112, 2020.
  9. M. V. Berlinkov and M. Szykuła. Algebraic synchronization criterion and computing reset words. Information Sciences, 369:718–730, 2016.
  10. A Characterization of Completely Reachable Automata. In Mizuho Hoshi and Shinnosuke Seki, editors, DLT, pages 145–155. Springer, 2018.
  11. J. Brzozowski and M. Szykuła. Large Aperiodic Semigroups. International Journal of Foundations of Computer Science, 26(07):913–931, 2015.
  12. D. Casas and M. V. Volkov. Binary completely reachable automata. In Armando Castañeda and Francisco Rodríguez-Henríquez, editors, LATIN 2022: Theoretical Informatics, pages 345–358. Springer, 2022. Full version at https://arxiv.org/abs/2205.09404.
  13. J. Černý. Poznámka k homogénnym experimentom s konečnými automatami. Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied, 14(3):208–216, 1964. In Slovak.
  14. The Algebraic Theory of Semigroups, volume 2. American Mathematical Society, 1967.
  15. M. Grech and A. Kisielewicz. The Černý conjecture for automata respecting intervals of a directed graph. Discrete Mathematics & Theoretical Computer Science, Vol. 15 no. 3, 2013.
  16. S. Hoffmann. Completely Reachable Automata, Primitive Groups and the State Complexity of the Set of Synchronizing Words. In Alberto Leporati, Carlos Martín-Vide, Dana Shapira, and Claudio Zandron, editors, Language and Automata Theory and Applications, LNCS, pages 305–317. Springer, 2021.
  17. S. Hoffmann. Sync-Maximal Permutation Groups Equal Primitive Permutation Groups. In Yo-Sub Han and Sang-Ki Ko, editors, Descriptional Complexity of Formal Systems, pages 38–50. Springer, 2021.
  18. S. Hoffmann. Constrained Synchronization for Monotonic and Solvable Automata and Automata with Simple Idempotents. In Pascal Caron and Ludovic Mignot, editors, Implementation and Application of Automata, LNCS, pages 225–237. Springer, 2022.
  19. J. Kari and M. V. Volkov. Černý conjecture and the road colouring problem. In Handbook of automata, volume 1, pages 525–565. European Mathematical Society Publishing House, 2021.
  20. Experiments with Synchronizing Automata. In Implementation and Application of Automata, volume 9705 of LNCS, pages 176–188. Springer, 2016.
  21. A. Kisielewicz and M. Szykuła. Generating Small Automata and the Černý Conjecture. In Implementation and Application of Automata, volume 7982 of LNCS, pages 340–348. Springer, 2013.
  22. J.-E. Pin. Sur un cas particulier de la conjecture de Černý. In ICALP, volume 62 of LNCS, pages 345–352. Springer, 1978.
  23. J.-E. Pin. On two combinatorial problems arising from automata theory. In Proceedings of the International Colloquium on Graph Theory and Combinatorics, volume 75 of North-Holland Mathematics Studies, pages 535–548, 1983.
  24. I. K. Rystsov. Estimation of the length of reset words for automata with simple idempotents. Cybern. Syst. Anal. 36, pages 339–344, 2000.
  25. I. K. Rystsov. Primitive and Irreducible Automata. Cybernetics and Systems Analysis, 51:506–513, 2015.
  26. Y. Shitov. An Improvement to a Recent Upper Bound for Synchronizing Words of Finite Automata. Journal of Automata, Languages and Combinatorics, 24(2–4):367–373, 2019.
  27. D. M. Smirnov. Correspondence between regular varieties of unary algebras and semigroups. Algebra and Logic, 17(4):310–315, 1978.
  28. B. Steinberg. A Theory of Transformation Monoids: Combinatorics and Representation Theory. Electron. J. Comb., 17, 2010.
  29. M. Szykuła. Improving the Upper Bound on the Length of the Shortest Reset Word. In STACS 2018, LIPIcs, pages 56:1–56:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.
  30. A. N. Trahtman. The Černý conjecture for aperiodic automata. Discrete Mathematics & Theoretical Computer Science, Vol. 9 no. 2, 2007.
  31. M. V. Volkov. Synchronizing Automata Preserving a Chain of Partial Orders. In Jan Holub and Jan Žďárek, editors, Implementation and Application of Automata, pages 27–37. Springer, 2007.
  32. M. V. Volkov. Synchronizing automata and the Černý conjecture. In Language and Automata Theory and Applications, volume 5196 of LNCS, pages 11–27. Springer, 2008.
  33. M. V. Volkov. Synchronization of finite automata. Uspekhi Matematicheskikh Nauk, 77:53–130, 2022. in Russian.
  34. M. V. Volkov. Synchronization of primitive automata. https://arxiv.org/abs/2306.13317, 2023.
Citations (3)

Summary

We haven't generated a summary for this paper yet.