A note on Ratliff-Rush filtration, reduction number and postulation number of $\mathfrak m$-primary ideals (2307.01196v1)
Abstract: Let $(R,\mathfrak m)$ be a Cohen-Macaulay local ring of dimension $d\geq 2$ and $I$ an $\mathfrak m$-primary ideal. Let rd$(I)$ be the reduction number of $I$ and n$(I)$ the postulation number. We prove that for $d=2,$ if n$(I)=\rho(I)-1,$ then rd$(I) \leq$n$(I)+2$ and if n$(I)\neq \rho(I)-1,$ then rd$(I)\geq$n$(I)+2.$ For $d \geq 3$, if $I$ is integrally closed, depth gr$(I) = d-2$ and n$(I)=-(d-3).$ Then we prove that rd$(I)\geq$n$(I)+d$. Our main result is to generalize a result of T. Marley on the relation between the Hilbert-Samuel function and the Hilbert-Samuel polynomial by relaxing the condition on the depth of the associated graded ring with the good behaviour of the Ratliff-Rush filtration with respect to $I$ mod a superficial element. From this result, it follows that for a Cohen-Macaulay ring of dimension $d\geq2$, if $P_{I}(k)=H_{I}(k)$ for some $k \geq \rho(I)$, then $P_{I}(n)=H_{I}(n)$ for all $n \geq k.$