2000 character limit reached
A Parallel-In-Time Adjoint Sensitivity Analysis for a B6 Bridge-Motor Supply Circuit (2307.00802v1)
Published 3 Jul 2023 in math.NA and cs.NA
Abstract: This paper presents a parallel-in-time adjoint sensitivity analysis which combines a transient adjoint sensitivity analysis with the parareal approach in order to significantly speed up the simulation. The adjoint method is the method of choice to calculate the sensitivities in a many-parameter setting. In order to obtain sensitivity information that is time-dependent, multiple adjoint problems must be solved. This slows down the simulation wall-clock time and leaves a large optimization potential for the analysis. The parareal is applied to the adjoint solution, significantly speeding up the adjoint solution for every timestep respectively.
- S. Director and R. Rohrer . “The generalized adjoint network and network sensitivities”. IEEE Transactions on Circuit Theory, 16(3), 1969, pp. 318-323.
- N. K. Nikolova, J. W. Bandler and M. H. Bakr. “Adjoint techniques for sensitivity analysis in high-frequency structure CAD”. IEEE Transactions on Microwave Theory and Techniques, 52(1), 2004, pp. 403-419.
- Y. Cao, S. Li, L. Petzold, R. Serban: “Adjoint sensitivity analysis for differential-algebraic equations: The adjoint DAE system and its numerical solution”. SIAM Journal on Scientific Computing 24, 2003, pp. 1076-1089.
- J. L. Lions, Y. Maday, and G. Turinici. “Résolution d’EDP par un schéma en temps «pararéel»” Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 332.7, 2001, pp. 661-668.
- I. Charpentier. “Checkpointing Schemes for Adjoint Codes: Application to the Meteorological Model Meso-NH”. SIAM Journal on Scientific Computing, 2001, pp. 2135-2151.
- J. L. Gustafson “Reevaluating Amdahl’s law.” Communications of the ACM, 31(5), 1988, pp. 532-533.
- I. Cortes Garcia, I. Kulchytska-Ruchka and S. Schöps. “Parareal for index two differential algebraic equations”. Numerical Algorithms, 2022, pp. 1-24.
- P. Welch. “The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms.” IEEE Transactions on audio and electroacoustics 15.2, 1967, pp. 70-73.