Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Relational Database Analytical Processing with Bulk-Bitwise Processing-in-Memory (2307.00658v1)

Published 2 Jul 2023 in cs.DB

Abstract: Online Analytical Processing (OLAP) for relational databases is a business decision support application. The application receives queries about the business database, usually requesting to summarize many database records, and produces few results. Existing OLAP requires transferring a large amount of data between the memory and the CPU, having a few operations per datum, and producing a small output. Hence, OLAP is a good candidate for processing-in-memory (PIM), where computation is performed where the data is stored, thus accelerating applications by reducing data movement between the memory and CPU. In particular, bulk-bitwise PIM, where the memory array is a bit-vector processing unit, seems a good match for OLAP. With the extensive inherent parallelism and minimal data movement of bulk-bitwise PIM, OLAP applications can process the entire database in parallel in memory, transferring only the results to the CPU. This paper shows a full stack adaptation of a bulk-bitwise PIM, from compiling SQL to hardware implementation, for supporting OLAP applications. Evaluating the Star Schema Benchmark (SSB), bulk-bitwise PIM achieves a 4.65X speedup over Monet-DB, a standard database system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. B. Perach, R. Ronen, B. Kimelfeld, and S. Kvatinsky, “PIMDB: Understanding Bulk-Bitwise Processing In-Memory Through Database Analytics,” 2022. [Online]. Available: https://arxiv.org/abs/2203.10486
  2. V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-memory accelerator for bulk bitwise operations using commodity dram technology,” in 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2017, pp. 273–287.
  3. N. Hajinazar, G. F. Oliveira, S. Gregorio, J. a. D. Ferreira, N. M. Ghiasi, M. Patel, M. Alser, S. Ghose, J. Gómez-Luna, and O. Mutlu, “Simdram: A framework for bit-serial simd processing using dram,” in Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS ’21.   New York, NY, USA: Association for Computing Machinery, 2021, p. 329–345. [Online]. Available: https://doi.org/10.1145/3445814.3446749
  4. S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, Z. Zhao, H. Cilasun, J. P. Wang, S. S. Sapatnekar, and U. R. Karpuzcu, “MOUSE: Inference In Non-volatile Memory for Energy Harvesting Applications,” in 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020, pp. 400–414.
  5. S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories,” in 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2016, pp. 1–6.
  6. V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “RowClone: Fast and energy-efficient in-DRAM bulk data copy and initialization,” in 2013 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2013, pp. 185–197.
  7. J. H. Kim, S.-h. Kang, S. Lee, H. Kim, W. Song, Y. Ro, S. Lee, D. Wang, H. Shin, B. Phuah, J. Choi, J. So, Y. Cho, J. Song, J. Choi, J. Cho, K. Sohn, Y. Sohn, K. Park, and N. S. Kim, “Aquabolt-xl: Samsung hbm2-pim with in-memory processing for ml accelerators and beyond,” in 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–26.
  8. J. Reuben, R. Ben-Hur, N. Wald, N. Talati, A. H. Ali, P.-E. Gaillardon, and S. Kvatinsky, “Memristive logic: A framework for evaluation and comparison,” in 2017 27th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), 2017, pp. 1–8.
  9. W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvious,” ACM SIGARCH Computer Architecture News, vol. 23, no. 1, p. 20–24, 1995. [Online]. Available: https://doi.org/10.1145/216585.216588
  10. J. Langguth, X. Cai, and M. Sourouri, “Memory bandwidth contention: Communication vs computation tradeoffs in supercomputers with multicore architectures,” in 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), 2018, pp. 497–506.
  11. A. Pedram, S. Richardson, M. Horowitz, S. Galal, and S. Kvatinsky, “Dark memory and accelerator-rich system optimization in the dark silicon era,” IEEE Design & Test, vol. 34, no. 2, pp. 39–50, 2017.
  12. B. Perach, R. Ronen, and S. Kvatinsky, “On consistency for bulk-bitwise processing-in-memory,” in 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA), 2023, pp. 705–717.
  13. ——, “Enabling relational database analytical processing in bulk-bitwise processing-in-memory,” 2023. [Online]. Available: https://arxiv.org/abs/2302.01675
  14. N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7, August 2011.
  15. M. Dreseler, M. Boissier, T. Rabl, and M. Uflacker, “Quantifying tpc-h choke points and their optimizations,” Proc. VLDB Endow., vol. 13, no. 8, p. 1206–1220, 2020. [Online]. Available: https://doi.org/10.14778/3389133.3389138
  16. “TPC benchmark H standard specification revision 3.0.0,” http://tpc.org/tpch/, Transaction Processing Performance Council, 2021.
  17. S. K. Shin and G. L. Sanders, “Denormalization Strategies for Data Retrieval from Data Warehouses,” Decis. Support Syst., vol. 42, no. 1, p. 267–282, 2006.
  18. R. Chirkova and J. Yang, “Materialized Views,” Foundations and Trends® in Databases, vol. 4, no. 4, pp. 295–405, 2012.
  19. X. Yu et al., “PushdownDB: Accelerating a DBMS Using S3 Computation,” in ICDE-36, 2020.
  20. S. Idreos et al., “MonetDB: Two Decades of Research in Column-oriented Database Architectures,” IEEE Data Eng. Bull., vol. 35, no. 1, pp. 40–45, 2012.
Citations (1)

Summary

We haven't generated a summary for this paper yet.