Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A perturbation result for the energy critical Choquard equation in $\mathbb{R}^N$ (2307.00564v1)

Published 2 Jul 2023 in math.AP

Abstract: We study the singularly perturbed nonlinear energy critical Choquard equation \begin{equation*} -{\Laplace u}\qty({x}) -{\alpha} \int_{\RN}\frac{up\qty(y)}{\abs{x-y}{\lambda}}\odif{y} u{p-1}\qty({x}) -\eps k\qty(x)u{\frac{N+2}{N-2}}\qty(x)=0, \qquad x\in\RN, \end{equation*} where $N\geq 3$, $0<\lambda<N$, $\lambda\leq 4$, $p=\frac{2N-\lambda}{N-2}$, $\alpha = \frac{ N\qty({N-2})\fct{\Gamma}{N-\frac{\lambda}{2}} }{ \pi^{\frac{N}{2}}\fct{\Gamma}{\frac{N-\lambda}{2}} }$,~ and $k$ is a positive function. By making use of a Lyapunov-Schmidt reduction argument, for sufficiently small $\eps\>0$, we construct solutions of the form \begin{align*} u_{\eps}\qty(x)=U_{\mu_{\eps},\xi_{\eps}}\qty(x)\qty(1+\O\qty(\eps)), \end{align*} where $U_{\mu_{\eps},\xi_{\eps}}$ is a positive solution of the unperturbed equation \begin{equation*} -{\Laplace u}\qty({x}) -{\alpha} \int_{\RN}\frac{up\qty(y)}{\abs{x-y}{\lambda}}\odif{y}=0,\qquad x\in\RN. \end{equation*}

Summary

We haven't generated a summary for this paper yet.