Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Sequence Computation of Higher Twisted $K$-Groups of $ SU(n)$ (2307.00423v3)

Published 1 Jul 2023 in math.KT, math.AT, and math.OA

Abstract: Motivated by the Freed-Hopkins-Teleman theorem we study graded equivariant higher twists of $K$-theory for the groups $G = SU(n)$ induced by exponential functors. We compute the rationalisation of these groups for all $n$ and all non-trivial functors. Classical twists use the determinant functor and yield equivariant bundles of compact operators that are classified by Dixmier-Douady theory. Their equivariant $K$-theory reproduces the Verlinde ring of conformal field theory. Higher twists give equivariant bundles of stable UHF algebras, which can be classified using stable homotopy theory. Rationally, only the $K$-theory in degree $\dim(G)$ is again non-trivial. The non-vanishing group is a quotient of a localisation of the representation ring $R(G) \otimes \mathbb{Q}$ by a higher fusion ideal $J_{F,\mathbb{Q}}$. We give generators for this ideal and prove that these can be obtained as derivatives of a potential. For the exterior algebra functor, which is exponential, we show that the determinant bundle over $LSU(n)$ has a non-commutative counterpart where the fibre is the unitary group of the UHF algebra.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com