Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradients Look Alike: Sensitivity is Often Overestimated in DP-SGD (2307.00310v3)

Published 1 Jul 2023 in cs.LG, cs.AI, cs.CR, and stat.ML

Abstract: Differentially private stochastic gradient descent (DP-SGD) is the canonical approach to private deep learning. While the current privacy analysis of DP-SGD is known to be tight in some settings, several empirical results suggest that models trained on common benchmark datasets leak significantly less privacy for many datapoints. Yet, despite past attempts, a rigorous explanation for why this is the case has not been reached. Is it because there exist tighter privacy upper bounds when restricted to these dataset settings, or are our attacks not strong enough for certain datapoints? In this paper, we provide the first per-instance (i.e., ``data-dependent") DP analysis of DP-SGD. Our analysis captures the intuition that points with similar neighbors in the dataset enjoy better data-dependent privacy than outliers. Formally, this is done by modifying the per-step privacy analysis of DP-SGD to introduce a dependence on the distribution of model updates computed from a training dataset. We further develop a new composition theorem to effectively use this new per-step analysis to reason about an entire training run. Put all together, our evaluation shows that this novel DP-SGD analysis allows us to now formally show that DP-SGD leaks significantly less privacy for many datapoints (when trained on common benchmarks) than the current data-independent guarantee. This implies privacy attacks will necessarily fail against many datapoints if the adversary does not have sufficient control over the possible training datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets