Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IRS-Aided Overloaded Multi-Antenna Systems: Joint User Grouping and Resource Allocation (2307.00265v1)

Published 1 Jul 2023 in cs.IT, eess.SP, and math.IT

Abstract: This paper studies an intelligent reflecting surface (IRS)-aided multi-antenna simultaneous wireless information and power transfer (SWIPT) system where an $M$-antenna access point (AP) serves $K$ single-antenna information users (IUs) and $J$ single-antenna energy users (EUs) with the aid of an IRS with phase errors. We explicitly concentrate on overloaded scenarios where $K + J > M$ and $K \geq M$. Our goal is to maximize the minimum throughput among all the IUs by optimizing the allocation of resources (including time, transmit beamforming at the AP, and reflect beamforming at the IRS), while guaranteeing the minimum amount of harvested energy at each EU. Towards this goal, we propose two user grouping (UG) schemes, namely, the non-overlapping UG scheme and the overlapping UG scheme, where the difference lies in whether identical IUs can exist in multiple groups. Different IU groups are served in orthogonal time dimensions, while the IUs in the same group are served simultaneously with all the EUs via spatial multiplexing. The two problems corresponding to the two UG schemes are mixed-integer non-convex optimization problems and difficult to solve optimally. We propose efficient algorithms for these two problems based on the big-M formulation, the penalty method, the block coordinate descent, and the successive convex approximation. Simulation results show that: 1) the non-robust counterparts of the proposed robust designs are unsuitable for practical IRS-aided SWIPT systems with phase errors since the energy harvesting constraints cannot be satisfied; 2) the proposed UG strategies can significantly improve the max-min throughput over the benchmark schemes without UG or adopting random UG; 3) the overlapping UG scheme performs much better than its non-overlapping counterpart when the absolute difference between $K$ and $M$ is small and the EH constraints are not stringent.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. S. Bi, C. K. Ho, and R. Zhang, “Wireless powered communication: Opportunities and challenges,” IEEE Commun. Mag., vol. 53, no. 4, pp. 117–125, Apr. 2015.
  2. L. R. Varshney, “Transporting information and energy simultaneously,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2008, pp. 1612–1616.
  3. R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless information and power transfer,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 1989–2001, May 2013.
  4. Q. Wu, G. Y. Li, W. Chen, D. W. K. Ng, and R. Schober, “An overview of sustainable green 5G networks,” IEEE Wireless Commun., vol. 24, no. 4, pp. 72–80, Aug. 2017.
  5. Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.
  6. Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.
  7. Q. Wu, X. Guan, and R. Zhang, “Intelligent reflecting surface-aided wireless energy and information transmission: An overview,” Proc. IEEE, vol. 110, no. 1, pp. 150–170, Jan. 2022.
  8. Q. Wu, X. Zhou, W. Chen, J. Li, and X. Zhang, “IRS-aided WPCNs: A new optimization framework for dynamic IRS beamforming,” IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 4725–4739, Jul. 2022.
  9. M. D. Renzo, M. Debbah, D.-T. Phan-Huy et al., “Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come,” EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, pp. 1–20, May 2019.
  10. Q. Wu and R. Zhang, “Weighted sum power maximization for intelligent reflecting surface aided SWIPT,” IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 586–590, May 2020.
  11. Q. Wu and R. Zhang, “Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1735–1748, Aug. 2020.
  12. C. Pan, H. Ren, K. Wang, M. Elkashlan, A. Nallanathan, J. Wang, and L. Hanzo, “Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1719–1734, Aug. 2020.
  13. W. Sun, Q. Song, L. Guo, and J. Zhao, “Secrecy rate maximization for intelligent reflecting surface aided SWIPT systems,” in Proc. IEEE Int. Conf. Commun. China (ICCC), Aug. 2020, pp. 1–6.
  14. S. Zargari, A. Khalili, Q. Wu, M. R. Mili, and D. W. K. Ng, “Max-min fair energy-efficient beamforming design for intelligent reflecting surface-aided SWIPT systems with non-linear energy harvesting model,” IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 5848–5864, Jun. 2021.
  15. Y. Zhao, B. Clerckx, and Z. Feng, “IRS-aided SWIPT: Joint waveform, active and passive beamforming design under nonlinear harvester model,” IEEE Trans. Commun., vol. 70, no. 2, pp. 1345–1359, Feb. 2022.
  16. Y. Gao, Q. Wu, W. Chen, C. Wu, D. W. K. Ng, and N. Al-Dhahir, “Exploiting intelligent reflecting surfaces for interference channels with SWIPT,” 2023, arXiv: 2303.02950. [Online]. Available: https://arxiv.org/abs/2303.02950
  17. M.-A. Badiu and J. P. Coon, “Communication through a large reflecting surface with phase errors,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 184–188, Feb. 2019.
  18. Z. Xing, R. Wang, J. Wu, and E. Liu, “Achievable rate analysis and phase shift optimization on intelligent reflecting surface with hardware impairments,” IEEE Trans. Wireless Commun., vol. 20, no. 9, pp. 5514–5530, Sep. 2021.
  19. Z. Chu, J. Zhong, P. Xiao et al., “RIS assisted wireless powered IoT networks with phase shift error and transceiver hardware impairment,” IEEE Trans. Wireless Commun., vol. 70, no. 7, pp. 4910–4924, Jul. 2022.
  20. A. Papazafeiropoulos, Z. Abdullah, P. Kourtessis et al., “Coverage probability of STAR-RIS-assisted massive MIMO systems with correlation and phase errors,” IEEE Wireless Commun. Lett., vol. 11, no. 8, pp. 1738–1742, Aug. 2022.
  21. T. Wang, M.-A. Badiu, G. Chen, and J. P. Coon, “Outage probability analysis of RIS-assisted wireless networks with Von Mises phase errors,” IEEE Wireless Commun. Lett., vol. 10, no. 12, pp. 2737–2741, Dec. 2021.
  22. Z. Abdullah, A. Papazafeiropoulos, S. Kisseleff et al., “Impact of phase-noise and spatial correlation on double-RIS-assisted multiuser MISO networks,” IEEE Wireless Commun. Lett., vol. 11, no. 7, pp. 1473–1477, Jul. 2022.
  23. H. Joudeh and B. Clerckx, “Rate-splitting for max-min fair multigroup multicast beamforming in overloaded systems,” IEEE Trans. Wireless Commun., vol. 16, no. 11, pp. 7276–7289, Nov. 2017.
  24. J. Xu and R. Zhang, “Energy beamforming with one-bit feedback,” IEEE Trans. Signal Process., vol. 62, no. 20, pp. 5370–5381, Oct. 2014.
  25. G. T. de Araújo and A. L. F. de Almeida, “PARAFAC-based channel estimation for intelligent reflective surface assisted MIMO system,” in Proc. IEEE SAM, 2020, pp. 1–5.
  26. L. Wei, C. Huang, G. C. Alexandropoulos, C. Yuen, Z. Zhang, and M. Debbah, “Channel estimation for RIS-empowered multi-user MISO wireless communications,” IEEE Trans. Commun., vol. 69, no. 6, pp. 4144–4157, Jun. 2021.
  27. P. Tseng, “Convergence of a block coordinate descent method for nondifferentiable minimization,” J. Optim. Theory Appl., vol. 109, no. 3, p. 475, Jun. 2001.
  28. Q. T. Dinh and M. Diehl, “Local convergence of sequential convex programming for nonconvex optimization,” in Recent Advances in Optimization and its Applications in Engineering.   Berlin, Germany: Springer, 2010, pp. 93–102.
  29. K. Wang, A. M. So, T. Chang et al., “Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization,” IEEE Trans. Signal Process., vol. 62, no. 21, pp. 5690–5705, Nov. 2014.
  30. D. W. K. Ng, Y. Wu, and R. Schober, “Power efficient resource allocation for full-duplex radio distributed antenna networks,” IEEE Trans. Wireless Commun., vol. 15, no. 4, pp. 2896–2911, Apr. 2016.
  31. H. A. Le Thi, T. Pham Dinh, and H. V. Ngai, “Exact penalty and error bounds in DC programming,” J. Global Optim., vol. 52, no. 3, pp. 509–535, Mar. 2012.
  32. T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolutionary optimization,” IEEE Trans. Evol. Comput., vol. 4, no. 3, pp. 284–294, Sep. 2000.
  33. Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing, communications, and machine learning,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, Feb. 2016.
  34. X. Yu, D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, “Robust and secure wireless communications via intelligent reflecting surfaces,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2637–2652, Nov. 2020.
Citations (6)

Summary

We haven't generated a summary for this paper yet.